
Simulink® Code Inspector™

Reference

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Code Inspector™ Reference
© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2011 Online only New for Version 1.0 (Release 2011b)
March 2012 Online only Revised for Version 1.1 (Release 2012a)
September 2012 Online only Revised for Version 1.2 (Release 2012b)
March 2013 Online only Revised for Version 1.3 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Functions — Alphabetical List

1

Model Configuration Constraints

2
Model Configuration Constraints 2-2

Simulink Configuration Parameter Constraints 2-4
Solver . 2-5
Data Import/Export . 2-5
Optimization . 2-5
Optimization: Signals and Parameters 2-7
Optimization: Stateflow . 2-8
Diagnostics: Data Validity . 2-8
Diagnostics: Connectivity . 2-9
Diagnostics: Model Referencing . 2-10
Hardware Implementation . 2-10
Model Referencing . 2-12
Code Generation: General . 2-12
Code Generation: Comments . 2-13
Code Generation: Symbols . 2-13
Code Generation: Custom Code . 2-14
Code Generation: Interface . 2-14
Code Generation: Verification . 2-16
Code Generation: Code Style . 2-17
Code Generation: Data Type Replacement 2-17
Code Generation: Not in GUI . 2-18

Other Modelwide Attribute Constraints 2-19

Supported Functions and Operations in Code
Replacement Libraries . 2-23

iii

Block Constraints

3
Block Constraints . 3-2

Block Constraints — Alphabetical List 3-5
All Blocks . 3-7
Abs . 3-9
Action Port . 3-9
Bitwise Operator . 3-9
Bus Assignment . 3-10
Bus Creator . 3-11
Bus Selector . 3-11
Constant . 3-11
Data Store Memory . 3-12
Data Store Read . 3-13
Data Store Write . 3-14
Data Type Conversion . 3-15
Data Type Duplicate . 3-16
Data Type Propagation . 3-16
Discrete-Time Integrator . 3-16
Demux . 3-18
DocBlock . 3-19
Enable Port . 3-19
From . 3-20
Function-Call Generator . 3-20
Gain . 3-20
Goto . 3-22
Ground . 3-22
If . 3-22
Inport . 3-23
Logical Operator . 3-24
1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1
or 2-D) . 3-25

Math Function . 3-27
Merge . 3-28
MinMax . 3-28
Model . 3-29
Model Info . 3-30
Multiport Switch . 3-30
Mux . 3-31
Outport . 3-31
Probe . 3-32

iv Contents

Product . 3-33
Relational Operator . 3-34
Reshape . 3-35
Rounding Function . 3-35
Saturation . 3-36
Selector . 3-37
S-Function . 3-37
Shift Arithmetic . 3-39
Sign . 3-40
Signal Conversion . 3-40
Signal Specification . 3-40
Sqrt . 3-41
Stateflow . 3-41
Subsystems . 3-47
Sum, Add, Subtract . 3-48
Switch . 3-49
Switch Case . 3-50
Terminator . 3-50
Trigger . 3-51
Trigonometric Function . 3-52
Unit Delay . 3-52
Vector Concatenate . 3-53
Width . 3-53

Supported Blocks — By Category 3-54
Commonly Used Blocks . 3-54
Discontinuity Blocks . 3-55
Discrete Blocks . 3-55
Logic and Bit Operation Blocks . 3-55
Lookup Tables . 3-55
Math Operation Blocks . 3-56
Model-Wide Utilities . 3-56
Port & Subsystem Blocks . 3-56
Signal Attribute Blocks . 3-57
Signal Routing Blocks . 3-57
Sink Blocks . 3-58
Source Blocks . 3-58
User-Defined Functions . 3-58

Fatal Incompatibilities . 3-59

Supported Mask Blocks . 3-64

v

Model Advisor Checks

4
Simulink Code Inspector Checks . 4-2
Simulink Code Inspector Checks Overview 4-4
Check code generation settings . 4-5
Check data import/export settings . 4-10
Check diagnostic settings . 4-11
Check hardware implementation settings 4-14
Check optimization settings . 4-16
Check solver settings . 4-19
Check for unconnected objects in the model 4-20
Check system target file setting . 4-21
Check function specification setting 4-22
Check for Stateflow machine data . 4-23
Check for Stateflow machine events 4-24
Check conditional input branch execution setting 4-25
Check for unsupported blocks . 4-26
Check storage class for workspace variables 4-27
Check for sample times in the model 4-29
Check for Signal Conversion blocks automatically inserted
on signals entering block input ports 4-30

Check for usage of fixed-point instrumentation 4-31
Check for root Outport blocks being conditionally
assigned . 4-32

Check for usage of synthesized local data stores 4-33
Check loop unrolling threshold setting 4-33
Check usage of global data stores . 4-35
Check destinations of If and Switchcase blocks 4-36
Check for root Outport blocks that have non-auto storage
class . 4-37

Check for Terminator blocks connected to Model Reference
block outports . 4-37

Check for root Outport blocks being testpointed 4-38
Check usage of Sources blocks . 4-39
Check usage of Signal Routing blocks 4-44
Check usage of Math Operations blocks 4-66
Check usage of Signal Attributes blocks 4-85
Check usage of Logical and Bit Operations blocks 4-95
Check usage of Lookup Tables blocks 4-102
Check usage of User-Defined Function blocks 4-106
Check usage of Ports and Subsystems blocks 4-109
Check usage of Discontinuities blocks 4-123
Check usage of Sinks blocks . 4-126

vi Contents

Check usage of Discrete blocks . 4-130
Check usage of Stateflow blocks . 4-135
Check usage of Stateflow charts . 4-137
Check usage of Stateflow transitions 4-139
Check usage of Stateflow junctions 4-142
Check usage of Stateflow data . 4-143
Check usage of Stateflow events . 4-144
Check usage of root Outport blocks 4-145
Check usage of buses . 4-146

Simulink Code Inspector Dialog Box Parameters

5
Simulink Code Inspector Dialog Box 5-2
Simulink Code Inspector Dialog Box Overview 5-4
This is the top of the model hierarchy 5-5
Inspect all referenced models . 5-6
Omit model from code inspection if it fails compatibility
check . 5-7

Generate code before code inspection 5-8
Code placement . 5-9
Code folder . 5-10
Report folder . 5-11

vii

viii Contents

1

Functions — Alphabetical
List

slci.Configuration.checkCompatibility

Purpose Check model compatibility with code inspection

Syntax [results] = checkCompatibility(cfgObj)
[results] = checkCompatibility(cfgObj, Name, Value)

Description [results] = checkCompatibility(cfgObj) checks a model for
compatibility with the code inspection process and returns objects
containing results information.

[results] = checkCompatibility(cfgObj, Name, Value)
additionally applies the settings specified in name-value pair
arguments.

This method runs the Simulink® Code Inspector™ compatibility checker
to determine if a model complies with the constrained set of modeling
semantics and code optimizations supported by the code inspection
process.

You can use the methods slci.Configuration.getFollowModelLinks
and slci.Configuration.setFollowModelLinks to configure whether
the scope of the compatibility check encompasses referenced models.

Tips Before running the Code Inspector on a model, run compatibility checks
repeatedly until the model is compatible.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-2

slci.Configuration.checkCompatibility

’DisplayResults’

Specify whether to display results of the compatibility checks.

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
checked while the run is in
progress

• For each system, the pass
and fail results of each
check.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Cell array of ModelAdvisor.SystemResult
objects, one for each model checked. Each
ModelAdvisor.SystemResult object contains
an array of CheckResultObj objects.

CheckResultObj Array of ModelAdvisor.CheckResult objects,
one for each check that runs.

Examples This example shows how to programmatically run the compatibility
checker and report results.

1-3

slci.Configuration.checkCompatibility

fprintf('\nInvoking compatibility checker ...\n');

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checks.

See Also slci.Configuration.getFollowModelLinks |
slci.Configuration.setFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-4

slci.Configuration.getCodeFolder

Purpose Return code folder for code inspection

Syntax folder = getCodeFolder(cfgObj)

Description folder = getCodeFolder(cfgObj) returns the path to a code folder,
as previously specified using slci.Configuration.setCodeFolder.
Use this method only if you are inspecting previously generated code
that has been repackaged to reside in a single, user-defined folder, as
specified using slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path or, if you have
not previously set a code folder value, ''
(default).

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

1-5

slci.Configuration.getCodeFolder

See Also slci.Configuration.setCodeFolder |
slci.Configuration.setCodePlacement

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-6

slci.Configuration.getCodePlacement

Purpose Return code placement for code inspection

Syntax value = getCodePlacement(cfgObj)

Description value = getCodePlacement(cfgObj) returns the value of a code
inspection option that specifies whether generated code has been
repackaged to reside in a single, user-defined folder. The value is
meaningful only if you are inspecting previously generated code.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

1-7

slci.Configuration.getCodePlacement

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodePlacement |
slci.Configuration.setCodeFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-8

slci.Configuration.getFollowModelLinks

Purpose Return model reference handling for model compatibility checking or
code inspection

Syntax value = getFollowModelLinks(cfgObj)

Description value = getFollowModelLinks(cfgObj) returns the value of a code
inspection option that specifies whether model compatibility checking
and code inspection should be performed for every descendant of this
model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model compatibility checking and
code inspection should be performed for
every descendant of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checking and code inspection.

See Also slci.Configuration.setFollowModelLinks

1-9

slci.Configuration.getFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-10

slci.Configuration.getGenerateCode

Purpose Return code generation option for code inspection

Syntax value = getGenerateCode(cfgObj)

Description value = getGenerateCode(cfgObj) returns the value of a code
inspection option that specifies whether to generate model code as part
of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setGenerateCode

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-11

slci.Configuration.getReportFolder

Purpose Return report folder for code inspection

Syntax folder = getReportFolder(cfgObj)

Description folder = getReportFolder(cfgObj) returns the path to a folder in
which code inspection places code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'));

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

1-12

slci.Configuration.getReportFolder

See Also slci.Configuration.setReportFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-13

slci.Configuration.getTerminateOnIncompatibility

Purpose Return termination option for code inspection

Syntax value = getTerminateOnIncompatibility(cfgObj)

Description value = getTerminateOnIncompatibility(cfgObj) returns the
value of a code inspection option that specifies whether code inspection
terminates if a model fails compatibility checking. If termination is
selected, model code generation (if requested) also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

1-14

slci.Configuration.getTerminateOnIncompatibility

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-15

slci.Configuration.getTopModel

Purpose Return top-model attribute for code inspection

Syntax value = getTopModel(cfgObj)

Description value = getTopModel(cfgObj) returns the value of a code inspection
attribute that specifies whether the model being configured for code
inspection is the top model in the model reference hierarchy. If the
model is not the top model, code inspection (and code generation if
requested) uses a model reference target rather than a top model target..

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

1-16

slci.Configuration.getTopModel

See Also slci.Configuration.setTopModel

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-17

slci.Configuration.inspect

Purpose Inspect code generated from model

Syntax results = inspect(cfgObj)
results = inspect(cfgObj, Name, Value)

Description results = inspect(cfgObj) executes the code inspection process per
code inspection configuration parameters and creates and displays
a code inspection report.

results = inspect(cfgObj, Name, Value) additionally applies the
settings specified in name-value pair arguments.

Tips Before inspecting code generated from a model, run
slci.Configuration.checkCompatibility repeatedly,
modifying the model, until the model is compatible with code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’DisplayResults’

Specify whether to display inspection results.

1-18

slci.Configuration.inspect

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
inspected while the run is
in progress

• For each system, the pass
and fail results of each
inspection.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Structure containing the following fields:
• ModelName: String specifying the name of
the model for which code was inspected.

• Status: String specifying the status
returned by code inspection.

• ReportFile: String specifying the folder
containing the code inspection report.

Examples This example shows how to programmatically run the Code Inspector
and report results. The model is assumed to have previously passed
compatibility checks (see slci.Configuration.checkCompatibility).

1-19

slci.Configuration.inspect

config = slci.Configuration('slcidemo_roll');

config.setReportFolder(fullfile('.','report'));

result = config.inspect();

fprintf('Model %s status: %s\n',result.ModelName, result.Status);

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-20

slci.Configuration.setCodeFolder

Purpose Specify code folder for code inspection

Syntax setCodeFolder(cfgObj, folder)

Description setCodeFolder(cfgObj, folder) specifies the path to a folder
containing previously generated code to be inspected. Use this
method only if you are inspecting generated code that has been
repackaged to reside in a single, user-defined folder, as specified using
slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

1-21

slci.Configuration.setCodeFolder

See Also slci.Configuration.setCodePlacement |
slci.Configuration.getCodeFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-22

slci.Configuration.setCodePlacement

Purpose Specify code placement for code inspection

Syntax setCodePlacement(cfgObj, codePlacement)

Description setCodePlacement(cfgObj, codePlacement) specifies whether
previously generated code retains the default folder structure
for generated code, or has been repackaged to reside in a single,
user-defined folder.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

codePlacement String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

1-23

slci.Configuration.setCodePlacement

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodeFolder |
slci.Configuration.getCodePlacement

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-24

slci.Configuration.setFollowModelLinks

Purpose Specify model reference handling for model compatibility checking or
code inspection

Syntax setFollowModelLinks(cfgObj, followModelLinks)

Description setFollowModelLinks(cfgObj, followModelLinks) specifies whether
model compatibility checking and code inspection should be performed
for every descendant of this model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

followModelLinks True if model compatibility checking and
code inspection should be performed for
every descendant of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

1-25

slci.Configuration.setFollowModelLinks

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-26

slci.Configuration.setGenerateCode

Purpose Specify whether to generate code before code inspection

Syntax setGenerateCode(cfgObj, generateCode)

Description setGenerateCode(cfgObj, generateCode) specifies whether to
generate model code as part of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

generateCode True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getGenerateCode

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-27

slci.Configuration.setReportFolder

Purpose Specify report folder for code inspection

Syntax setReportFolder(cfgObj, folder)

Description setReportFolder(cfgObj, folder) specifies a folder in which code
inspection should place code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'))

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getReportFolder

1-28

slci.Configuration.setReportFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-29

slci.Configuration.setTerminateOnIncompatibility

Purpose Specify whether to terminate code inspection if model is incompatible

Syntax setTerminateOnIncompatibility(cfgObj, terminate)

Description setTerminateOnIncompatibility(cfgObj, terminate) specifies
whether code inspection terminates if a model fails compatibility
checking. If termination is selected, model code generation (if requested)
also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

terminate True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

1-30

slci.Configuration.setTerminateOnIncompatibility

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-31

slci.Configuration.setTopModel

Purpose Specify whether model being configured for code inspection is top model

Syntax setTopModel(cfgObj, top)

Description setTopModel(cfgObj, top) specifies whether the model being
configured for code inspection is the top model in the model reference
hierarchy. If the model is not the top model, code inspection (and code
generation if requested) uses a model reference target rather than
a top model target.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

top True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTopModel

1-32

slci.Configuration.setTopModel

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-33

slci.Configuration

Purpose Control code inspection and compatibility checking for model

Description An slci.Configuration object configures code inspection and
compatibility checking for a model.

Construction slci.Configuration Create code inspection object

Methods checkCompatibility Check model compatibility with
code inspection

getCodeFolder Return code folder for code
inspection

getCodePlacement Return code placement for code
inspection

getFollowModelLinks Return model reference handling
for model compatibility checking
or code inspection

getGenerateCode Return code generation option for
code inspection

getReportFolder Return report folder for code
inspection

getTerminateOnIncompatibility Return termination option for
code inspection

getTopModel Return top-model attribute for
code inspection

inspect Inspect code generated from
model

setCodeFolder Specify code folder for code
inspection

1-34

slci.Configuration

setCodePlacement Specify code placement for code
inspection

setFollowModelLinks Specify model reference handling
for model compatibility checking
or code inspection

setGenerateCode Specify whether to generate code
before code inspection

setReportFolder Specify report folder for code
inspection

setTerminateOnIncompatibility Specify whether to terminate
code inspection if model is
incompatible

setTopModel Specify whether model being
configured for code inspection is
top model

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB® Programming Fundamentals documentation.

Examples The Simulink Code Inspector example slcidemo_intro shows how to
programmatically run the compatibility checker and the Code Inspector
and report results. The example also illustrates reporting of an error
that is purposely introduced into the generated code.

See also the reference pages for
slci.Configuration.checkCompatibility,
slci.Configuration.inspect, and other slci.Configuration
methods for individual call examples.

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checks and code inspection.

How To • “Check Model Compatibility Using the Graphical User Interface”

1-35

slci.Configuration

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-36

slci.Configuration

Purpose Create code inspection object

Syntax cfgObj = slci.Configuration(modelName)

Description cfgObj = slci.Configuration(modelName) creates an object of class
slci.Configuration and returns a handle to it.

Input
Arguments

modelName Name of the model for which you are
configuring code inspection and compatibility
checking. Cannot be a subsystem path.

Output
Arguments

cfgObj Handle to code inspection object.

Examples This example creates a code inspection object, config, and uses it to
check the specified model for compatibility with code inspection.

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checks and code inspection.

If you want to run compatibility checks on a subsystem:

1 From the Model Editor, select Analysis > Model Advisor > Model
Advisor.

1-37

slci.Configuration

2 In the System Selector window, select the subsystem.

3 Click OK.

You can use the Model Advisor window to select and run the Simulink
Code Inspector compatibility checks on your subsystem. See “Consult
the Model Advisor”.

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

1-38

slci.ExportTraceReport

Purpose Generate XLS file that contains traceability matrix

Syntax slci.ExportTraceReport(cfgObj)
slci.ExportTraceReport(cfgObj, 'file_name')
slci.ExportTraceReport(cfgObj, 'file_name', 'path')

Description slci.ExportTraceReport(cfgObj) generates an XLS file that contains
a “Traceability Matrix” on page 1-40. cfgObj is a handle to a Simulink
Code Inspector configuration object previously returned by cfgObj =
slci.Configuration(modelName);. If you do not provide a:

• file_name, the function names the file using the following
convention. timestamp is the current date and time:
model_name_Trace_timestamp.xls

• path, the function saves the file in the working directory

slci.ExportTraceReport(cfgObj, 'file_name') generates an XLS
file that contains a “Traceability Matrix” on page 1-40. file_name is a
string that specifies the name of the XLS file. The first time that you
call slci.ExportTraceReport, file_name is optional. To regenerate
the traceability matrix, you must specify file_name.

slci.ExportTraceReport(cfgObj, 'file_name', 'path') generates
an XLS file that contains a “Traceability Matrix” on page 1-40. path is
an optional string that specifies the full path to the location where you
want the software to save the file.

Tips • The slci.ExportTraceReport function works in Microsoft®

Windows® platforms only.

• To include requirements documentation in the traceability
matrix, attach requirements documents to the model before using
slci.ExportTraceReport.

• You must generate and inspect model code, with traceability
report options selected, and without reported failures, before using
slci.ExportTraceReport.

1-39

slci.ExportTraceReport

• The slci.ExportTraceReport function does not support generating
a traceability matrix for referenced models. When you generate a
traceability matrix for a model that contains referenced models,
the traceability matrix contains information about the Model block
only. The traceability matrix does not contain information about the
contents of the referenced model. If your model contains referenced
models, generate a traceability matrix for the top-level model and
each referenced model separately.

• In most cases, the slci.ExportTraceReport function identifies
comments that you add to the traceability matrix. When the function
cannot identify comments, the traceability matrix includes the text:

Row is not unique: comment

For more information, see Prerequisites for Generating a Traceability
Matrix.

Definitions Traceability Matrix

A traceability matrix provides traceability among model objects,
generated code, and model requirements. You can add comments to the
generated traceability matrix. If you change the model and regenerate
the traceability matrix, the software retains your comments.

Examples Generate a traceability matrix with traceability between model objects
and generated code for the slcidemo_roll model.

1 Open the example model slcidemo_roll_orig and save it to a work
folder as slcidemo_roll.

2 Open the Configuration Parameters dialog box, and on the Code
Generation > Report pane, verify that at least one traceability
report option is selected.

3 Optionally, run model compatibility checks to verify that the model is
ready for code inspection. For example, open the SLCI Advisor using
the MATLAB command slciadvisor('slcidemo_roll'), select
all checks, and run the checks.

1-40

slci.ExportTraceReport

4 Create an object of class slci.Configuration and return a handle
to the model. For example, enter the MATLAB command cfgObj =
slci.Configuration('slcidemo_roll');.

5 Generate and inspect the model code using MATLAB commands.
For example:

• To generate code, enter rtwbuild('slcidemo_roll').

• To inspect the code, enter cfgObj.inspect.

6 Create a traceability matrix using a command similar to the
following:

slci.ExportTraceReport(cfgObj,'slcidemo_roll_tracereport')

7 Open the file slcidemo_roll_tracereport.xls and examine the
contents of the generated worksheets.

How To • Traceability Matrices

• Prerequisites for Generating a Traceability Matrix

• Generate a Traceability Matrix

1-41

slciadvisor

Purpose Open Simulink Code Inspector Advisor

Syntax slciadvisor('model_name')

Description slciadvisor('model_name') opens an SLCI Advisor session
(equivalent to Model Advisor preloaded with Simulink Code Inspector
checks) for the specified open model. This function provides direct
access to SLCI model compatibility checking that can streamline
iterative checking of a model.

Example Open an interactive SLCI model compatibility checking session for the
example model slcidemo_roll_orig.

1 Open the example model slcidemo_roll_orig and save it to a work
folder as slcidemo_roll.

2 Open the SLCI Advisor for the model using the following command:

>> slciadvisor('slcidemo_roll')

3 Select all SLCI checks, and run the checks.

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

1-42

2

Model Configuration
Constraints

• “Model Configuration Constraints” on page 2-2

• “Simulink Configuration Parameter Constraints” on page 2-4

• “Other Modelwide Attribute Constraints” on page 2-19

• “Supported Functions and Operations in Code Replacement Libraries”
on page 2-23

2 Model Configuration Constraints

Model Configuration Constraints
Simulink Code Inspector requires that you set a subset of Simulink
configuration parameters and other model attributes to specific values.
“Simulink Configuration Parameter Constraints” on page 2-4 presents
required settings for Configuration Parameters Dialog Box parameters and
their equivalent command-line parameters. “Other Modelwide Attribute
Constraints” on page 2-19 presents required settings for other model
attributes.

For each Configuration Parameters dialog pane or other model attributes
category, a table provides:

• The category name; dialog pane names link to the complete dialog pane
description

• Constraints that apply to each listed model configuration parameter or
model attribute

A sample table is shown below. For each entry:

• The Parameter column lists the dialog box name of the parameter, with
the command-line name of the parameter in parentheses. (For model
attribute entries, the first column identifies the attribute.)

• The Constraint column lists the Simulink Code Inspector constraint on
the model parameter or attribute.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that a constraint violation (FATAL or Nonfatal) terminates
code inspection.

- When you inspect code generated from models with a FATAL
incompatibility, code inspection terminates. Code generated from models
with FATAL incompatibilities cannot be verified.

- When you inspect code generated from models with nonfatal
incompatibilities, code inspection does not terminate. Although it
might not be possible to fully verify the generated code, code inspection
continues. The Simulink Code Inspector might partially verify the
generated code.

2-2

Model Configuration Constraints

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to Discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

2-3

2 Model Configuration Constraints

Simulink Configuration Parameter Constraints

In this section...

“Solver” on page 2-5

“Data Import/Export” on page 2-5

“Optimization” on page 2-5

“Optimization: Signals and Parameters” on page 2-7

“Optimization: Stateflow” on page 2-8

“Diagnostics: Data Validity” on page 2-8

“Diagnostics: Connectivity” on page 2-9

“Diagnostics: Model Referencing” on page 2-10

“Hardware Implementation” on page 2-10

“Model Referencing” on page 2-12

“Code Generation: General” on page 2-12

“Code Generation: Comments” on page 2-13

“Code Generation: Symbols” on page 2-13

“Code Generation: Custom Code” on page 2-14

“Code Generation: Interface” on page 2-14

“Code Generation: Verification” on page 2-16

“Code Generation: Code Style” on page 2-17

“Code Generation: Data Type Replacement” on page 2-17

“Code Generation: Not in GUI” on page 2-18

2-4

Simulink® Configuration Parameter Constraints

Solver

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

Data Import/Export

Data Import/Export Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Initial state
(LoadInitialState)

Must be cleared (set to off). Nonfatal Check solver settings
> Verify ’Initial state’
setting

Optimization

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Implement logic
signals as Boolean

Must be selected (set to on). Nonfatal Check optimization
settings > Verify

2-5

2 Model Configuration Constraints

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

data (vs. double)
(BooleanDataType)

’Implement logic signals
as Boolean data (vs.
double)’ setting

Optimize
initialization code
for model reference
(OptimizeModelRef-
InitCode)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify
’Optimize initialization
code for model reference’
setting

Remove code from
floating-point to
integer conversions
that wraps
out-of-range values
(EfficientFloat2Int-
Cast)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
that wraps out-of-range
values’ setting

Remove code from
floating-point to
integer conversions
with saturation that
maps NaN to zero
(EfficientMapNaN2Int-
Zero)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
with saturation that
maps NaN to zero’
setting

Remove code that
protects against
division arithmetic
exceptions
(NoFixptDivByZero-
Protection)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify
’Remove code that
protects against division
arithmetic exceptions’
setting

2-6

Simulink® Configuration Parameter Constraints

Optimization: Signals and Parameters

Optimization Pane: Signals and Parameters

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Simplify array
indexing
(StrengthReduction)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify
’Simplify array indexing’
setting

Pack Boolean
data into bitfields
(BooleansAsBitfields)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Pack
Boolean data into
bitfields’ setting

Maximum stack size
(bytes) (MaxStackSize)

Must be set to inf. Nonfatal Check optimization
settings>Verify
’Maximum stack size
(bytes)’ setting

Loop unrolling
threshold
(RollThreshold)

Must be set to a value
that does not result in
partially unrolled loops in
the generated code.

Nonfatal Check loop unrolling
threshold setting>Verify
loop unrolling threshold
setting

Pass reusable
subsystem
outputs as:
(PassReuseOutputArgsAs)

Must be set to Structure
reference if referenced
model has root outports
with non-auto storage class.

Nonfatal Check for root Outport
blocks that have
non-auto storage class
>Verify that the storage
class of root outports is
supported

2-7

2 Model Configuration Constraints

Optimization: Stateflow

“Optimization Pane: Stateflow®”

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Use bitsets for
storing Boolean data
(DataBitsets)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ‘Use
bitsets for storing
Boolean data’ setting

Diagnostics: Data Validity

Diagnostics Pane: Data Validity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Detect downcast
(ParameterDowncastMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
downcast’ setting

Detect overflow
(ParameterOverflowMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
overflow’ setting

Detect underflow
(ParameterUnderflow-
Msg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
underflow’ setting

Detect precision loss
(ParameterPrecision-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
precision loss’ setting

Detect loss
of tunability
(ParameterTunability-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
loss of tunability’ setting

2-8

Simulink® Configuration Parameter Constraints

Diagnostics Pane: Data Validity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Underspecified
initialization
detection
(Underspecified-
Initialization-
Detection)

Must be set to Simplified.
Configuring the model
to initialize block initial
conditions using simplified
behavior can improve the
consistency of model results.

Nonfatal Check diagnostic
settings > Verify
’Underspecified
initialization detection’
setting

Detect write
after write
(WriteAfterWriteMsg)

Must be set to
EnableAllAsError.

Nonfatal Check diagnostic
settings > Verify ’Detect
write after write’ setting

Diagnostics: Connectivity

Diagnostics Pane: Connectivity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Bus signal treated as
vector (StrictBusMsg)

Must be set to
error (equivalent to
ErrorOnBusTreatedAs-
Vector specified at the
command line).

FATAL Check diagnostic
settings > Verify Bus
signal treated as vector
setting

Non-bus signals
treated as bus signals
(NonBusSignalsTreated-
AsBus)

Must be set to error. FATAL Check diagnostic
settings > Verify
’Non-bus signals treated
as bus signals’ setting

2-9

2 Model Configuration Constraints

Diagnostics: Model Referencing

Diagnostics Pane: Model Referencing

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Invalid root
Inport/Outport
block connection
(ModelReferenceIOMsg)

Must be set to error. This
setting disallows automatic
insertion of hidden signal
copy blocks at the model
inports and outports. If
an error is generated, it
identifies the locations at
which you can manually
insert Signal Conversion
blocks to avoid the error
and maintain traceability.

Nonfatal Check diagnostic
settings > Verify ’Invalid
root Inport/Outport
block connection’ setting

Hardware Implementation

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Number of bits: char
(ProdBitPerChar)

Must be set to 8. Nonfatal Check hardware
implementation settings
> Verify ’char’ setting

Number of bits: short
(ProdBitPerShort)

Must be set to 16. Nonfatal Check hardware
implementation settings
> Verify ’short’ setting

Number of bits: int
(ProdBitPerInt)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’int’ setting

Number of bits: long
(ProdBitPerLong)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’long’ setting

2-10

Simulink® Configuration Parameter Constraints

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Number of bits: float
(ProdBitPerFloat)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’float’ setting

Number of
bits: double
(ProdBitPerDouble)

Must be set to 64. Nonfatal Check hardware
implementation settings
> Verify ’double’ setting

Number of bits:
native (ProdWordSize)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’native’ setting

Number of
bits: pointer
(ProdBitPerPointer)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’pointer’ setting

Signed integer
division rounds to
(ProdIntDivRoundTo)

Must be set to Zero. Nonfatal Check hardware
implementation settings
> Verify ’Signed integer
division rounds to’
setting

Shift right on a
signed integer as
arithmetic shift
(ProdShiftRightInt-
Arith)

Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’Shift right
on a signed integer as
arithmetic shift’ setting

None (ProdEqTarget) Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’None’ setting

• Device vendor

• Device type
(ProdHWDeviceType)

Must not be set to
ASIC/FPGA.

Nonfatal Check hardware
implementation
settings>Verify ’Device
vendor->Device type‘
setting

2-11

2 Model Configuration Constraints

Model Referencing

Model Referencing

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Total number of
instances allowed
per top model
(ModelReferenceNumInstancesAllowed)

For referenced models,
root outports cannot be
testpointed. To suppress
the check for top models
in the hierarchy, Total
number of instances
allowed per top model
must be set to Zero.

Nonfatal Check for root Outport
blocks being testpointed
> Verify that root
outports are not
testpointed

Code Generation: General

Code Generation Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

System target file
(SystemTargetFile)

Must be set to ert.tlc or
the system target file for an
ERT-derived target.

FATAL Check system target file
setting

Language
(TargetLang)

Must be set to C or C++. FATAL Check code generation
settings > Verify
’Language’ setting

TLC options
(TLCOptions)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify ’TLC
options’ setting

2-12

Simulink® Configuration Parameter Constraints

Code Generation: Comments

Code Generation Pane: Comments

Parameter Constraint FATAL /
Nonfatal

Compatibility Check

Include comments
(GenerateComments)

Must be selected (set to on).
The Code Inspector parses
autogenerated comments
to obtain traceability
information about model
data.

FATAL Check code generation
settings > Verify ’Include
comments’ setting

Code Generation: Symbols

Code Generation Pane: Symbols

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Generate scalar
inlined parameter
as (InlinedPrmAccess)

Must be set to Literals. Nonfatal Check code generation
settings > Verify
’Generate scalar inlined
parameter as’ setting

Signal naming
(SignalNamingRule)

Must be set to None. Nonfatal Check code generation
settings>Verify ’Signal
naming’ setting

Parameter naming
(ParamNamingRule)

Must be set to None. Nonfatal Check code generation
settings>Verify
’Parameter naming’
setting

2-13

2 Model Configuration Constraints

Code Generation: Custom Code

Code Generation Pane: Custom Code

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Source file
(CustomSourceCode)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify ’Source
file’ setting

Header file
(CustomHeaderCode)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings>Verify ‘Header
file’ setting

Initialize function
(CustomInitializer)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Initialize function’
setting

Terminate function
(CustomTerminator)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Terminate function’
setting

Code Generation: Interface

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Code replacement
library
(CodeReplacement-
Library)

Must be set to C89/C90
(ANSI), ANSI_C, C99
(ISO) , or ISO_C in the
Configuration Parameters
dialog box. You can also
use “Supported Functions
and Operations in Code

Nonfatal Check code generation
settings > Verify ’Code
replacement library’
setting

2-14

Simulink® Configuration Parameter Constraints

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Replacement Libraries” on
page 2-23.

Shared code
placement
(UtilityFuncGeneration)

Must be set to Shared
location. Using a shared
location for utility functions,
macros, and user-defined
data types promotes
debugging and traceability
of generated code.

Nonfatal Check code generation
settings>Verify ’Shared
code placement’ setting

Support: non-finite
numbers
(SupportNonFinite)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’non-finite numbers’
setting

Support:
absolute time
(SupportAbsoluteTime)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’absolute time’ setting

Classic call interface
(GRTInterface)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify ’Classic
call interface’ setting

Single output/update
function
(CombineOutputUpdate-
Fcns)

Must be selected (set to on). Nonfatal Check code generation
settings>Verify ’Single
output/update function’
setting

Terminate
function required
(IncludeMdlTerminate-
Fcn)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Terminate function
required’ setting

2-15

2 Model Configuration Constraints

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Suppress error
status in real-time
model data structure
(SuppressErrorStatus)

Must be selected (set to
on). This helps prevent
generation of the rtModel
data structure, which is
not supported for code
inspection.

Nonfatal Check code generation
settings > Verify
’Suppress error status
in real-time model data
structure’ setting

Combine signal/state
structures
(CombineSignalStateStructs)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Combine signal/state
structures’ setting

MAT-file logging
(MatFileLogging)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’MAT-file logging’ setting

Interface
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO,
ExtMode, and
GenerateASAP2)

Must be cleared
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO, ExtMode,
and GenerateASAP2 must
be set to off).

Nonfatal Check code generation
settings > Verify Code
Generation > Interface >
Interface setting

Code Generation: Verification

“Code Generation Pane: Verification”

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Create block
(CreateSILPILBlock)

Must be set to None. Nonfatal Check code generation
settings > Verify ’Create
block’ setting

Measure function
execution times

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify

2-16

Simulink® Configuration Parameter Constraints

“Code Generation Pane: Verification”

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

(CodeProfiling-
Instrumentation)

’Measure function
execution times’ setting

Code Generation: Code Style

Code Generation Pane: Code Style

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Preserve condition
expression in
if statement
(PreserveIfCondition)

Must be selected (set to on). Nonfatal Check code generation
settings > Verify
’Preserve condition
expression in if
statement’ setting

Code Generation: Data Type Replacement

Code Generation Pane: Data Type Replacement

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Replace data
type names in
the generated
code (EnableUser-
ReplacementTypes)

Must be cleared (set to off).
Data type replacement
is not supported for code
inspection.

Nonfatal Check code generation
settings > Verify ’Replace
data type names in the
generated code’ setting

2-17

2 Model Configuration Constraints

Code Generation: Not in GUI

Parameter Command-Line Information Summary

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

AdvancedOptControl Should be set to -SLCI.
This setting disables
optimizations that are
incompatible with Simulink
Code Inspector.

Nonfatal Check optimization
settings > Verify
’AdvancedOptControl’
setting

IncludeERTFirstTime Must be set to off. Nonfatal Check code generation
settings > Verify
’IncludeERTFirstTime’
setting

2-18

Other Modelwide Attribute Constraints

Other Modelwide Attribute Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Unconnected objects There must not be
unconnected lines, input
ports, or output ports in the
model or subsystem. This
helps prevent dead code and
hidden ground blocks.

Nonfatal Check for unconnected
objects in the model

Function specifications The model cannot specify
custommodel entry function
prototypes. Function
specification in the Model
Interface dialog box must
be set to Default model
initialize and step
functions.

Nonfatal Check function
specification setting

Conditional input
branch execution

The model must enable
signal storage reuse and
local block outputs when
using conditional input
branch execution.

Nonfatal Check conditional input
branch execution setting

Unsupported blocks There must not be blocks
in the model that are not
supported by Simulink Code
Inspector.

Nonfatal Check for unsupported
blocks

2-19

2 Model Configuration Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Storage classes for
workspace variables

The model cannot reference
workspace variables that
are not supported for one or
both of these reasons:
• The “Custom Storage
Classes” Type is not set
to Unstructured.

• Workspace variable is
tunable, with data type
set to struct.

Nonfatal Check storage class for
workspace variables

Usage of sample times The model cannot use
multiple, variable,
continuous, or
asynchronous sample
times.

FATAL Check for sample times
in the model

Automatic insertion
of Signal Conversion
blocks on signals
entering block inports

Automatic insertion of a
Signal Conversion block on
a signal entering a block
inport is not supported
for code inspection. It
creates a hidden Signal
Conversion block, which
is not supported for code
inspection.

Nonfatal Check for Signal
Conversion blocks
automatically inserted
on signals entering block
input ports > Verify
no Signal Conversion
blocks are automatically
inserted on signals
entering block inports

Fixed-point
instrumentation and
block reduction both
selected

Simultaneous use of
fixed-point instrumentation
and block reduction is
not supported for code
inspection.

Nonfatal Check for usage
of fixed-point
instrumentation > Verify
usage of fixed-point
instrumentation

2-20

Other Modelwide Attribute Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Conditional assignment
of root Outport blocks

If the root outport storage
class is set to Auto, when
it used in a referenced
model, it cannot be directly
connected to conditionally
executed subsystems.

Nonfatal Check for root
Outport blocks being
conditionally assigned

Root Outport block
sample times

Root Outport blocks
cannot specify a constant
(Inf) sample time. This
constraint prevents the root
outport assignment from
being moved to the model
initialize function, which
would cause the model
functions to fail validation.

Nonfatal Check usage of root
Outport blocks > Verify
sample times

Root Output block bus
passing method

A root Outport block
that passes a bus to a
parent model must pass
the bus as a structure.
Otherwise, Simulink
software might insert a
hidden Signal Conversion
block in the parent model,
which is not supported
for code inspection.
For each instance, the
Outport block parameter
Output as nonvirtual
bus in parent model
(BusOutputAsStruct) must
be selected.

Nonfatal Check usage of root
Outport blocks > Verify
root Outports pass buses
to parent models as
structures

2-21

2 Model Configuration Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Automatic virtual
to nonvirtual bus
conversion

Automatic conversion
between virtual and
nonvirtual buses is
not supported for code
inspection. It creates a
hidden Signal Conversion
block, which is not
supported for code
inspection.

FATAL Check usage of buses
> Check for automatic
conversion between
virtual to non-virtual
buses

Block operations on a
bus

A nonvirtual block cannot
operate on a virtual bus,
and a Unit Delay block
cannot operate on a bus
(virtual or nonvirtual).
This constraint simplifies
bus processing to promote
traceability and readability
of generated code.

FATAL Check usage of buses >
Verify that no blocks in
the model operate on a
virtual bus

2-22

Supported Functions and Operations in Code Replacement Libraries

Supported Functions and Operations in Code Replacement
Libraries

Simulink Code Inspector inspects code that uses these functions and
operations in the code replacement libraries (CRLs). For more information
about CRLs, see “Code Replacement”.

Math Functions

abs acos acosh asin

asinh atan atan2 atanh

ceil cos cosh exp

fix floor hypot log

log10 max min mod/fmod

pow rem round saturate

sin sincos sinh sqrt

tan tanh

Operator Key Scalar Inputs Nonscalar Inputs

Multiplication
(*)

RTW_OP_MUL — Yes

Matrix right
division (/)

RTW_OP_RDIV1 — Yes

Matrix left
division (\)

RTW_OP_LDIV1 — Yes

Matrix
inversion (inv)

RTW_OP_INV1 — Yes

Transposition
(.')

RTW_OP_TRANS — Yes

Notes:
1 Matrix division and inversion are supported for Simulink code generation
(not for Stateflow or MATLAB Coder™ code generation).

2-23

2 Model Configuration Constraints

2-24

3

Block Constraints

• “Block Constraints” on page 3-2

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

• “Fatal Incompatibilities” on page 3-59

• “Supported Mask Blocks” on page 3-64

3 Block Constraints

Block Constraints
Simulink Code Inspector supports a subset of Simulink blocks for code
inspection. For the supported blocks, some block-specific constraints on
data types and block parameters may apply. Additionally, a few constraints
apply to all supported blocks. Before code inspection, when you check the
compatibility of your model with code inspection rules, the compatibility
checker detects and reports violations of block constraints.

“Block Constraints — Alphabetical List” on page 3-5 presents the supported
blocks in alphabetical order. For each supported block, a table provides:

• The block name, which links to the complete block description

• Data type constraints that apply to the block

• Block parameter constraints that apply to the block

A sample table is shown below. For each entry:

• The Constraint column lists the Simulink Code Inspector constraint on
block data types or a block parameter. For block parameters, the entry lists
the dialog box name of the parameter, with the command-line name of the
parameter in parentheses.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that constraint violation (FATAL or Nonfatal) terminates
code inspection.

- When you inspect code generated from models with a FATAL
incompatibility, code inspection terminates. Code generated from models
with FATAL incompatibilities cannot be verified.

- When you inspect code generated from models with nonfatal
incompatibilities, code inspection does not terminate. Although it
might not be possible to fully verify the generated code, code inspection
continues. The Simulink Code Inspector might partially verify the
generated code.

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

3-2

Block Constraints

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, or have two or more
dimensions.

Nonfatal

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, or have two or more
dimensions.

Nonfatal

The source of the upper limit value
must be block parameter Upper
limit rather than input ports
(UpperLimitSource must be set to
dialog).

Nonfatal

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of
Discontinuities blocks >
Check Saturate blocks

“All Blocks” on page 3-7 lists constraints that apply to supported blocks.

“Supported Blocks — By Category” on page 3-54 presents the supported
blocks by category and provides links to the block-specific constraints.

“Supported Mask Blocks” on page 3-64 presents the supported mask blocks.

3-3

3 Block Constraints

Note Blocks that are supported for code inspection, including mask blocks,
are available in the block library slcilib, which you can open by entering
slcilib in the MATLAB Command Window.

3-4

Block Constraints — Alphabetical List

Block Constraints — Alphabetical List

In this section...

“All Blocks” on page 3-7

“Abs” on page 3-9

“Action Port” on page 3-9

“Bitwise Operator” on page 3-9

“Bus Assignment” on page 3-10

“Bus Creator” on page 3-11

“Bus Selector” on page 3-11

“Constant” on page 3-11

“Data Store Memory” on page 3-12

“Data Store Read” on page 3-13

“Data Store Write” on page 3-14

“Data Type Conversion” on page 3-15

“Data Type Duplicate” on page 3-16

“Data Type Propagation” on page 3-16

“Discrete-Time Integrator” on page 3-16

“Demux” on page 3-18

“DocBlock” on page 3-19

“Enable Port” on page 3-19

“From” on page 3-20

“Function-Call Generator” on page 3-20

“Gain” on page 3-20

“Goto” on page 3-22

“Ground” on page 3-22

“If” on page 3-22

“Inport” on page 3-23

3-5

3 Block Constraints

In this section...

“Logical Operator” on page 3-24

“1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)” on
page 3-25

“Math Function” on page 3-27

“Merge” on page 3-28

“MinMax” on page 3-28

“Model” on page 3-29

“Model Info” on page 3-30

“Multiport Switch” on page 3-30

“Mux” on page 3-31

“Outport” on page 3-31

“Probe” on page 3-32

“Product” on page 3-33

“Relational Operator” on page 3-34

“Reshape” on page 3-35

“Rounding Function” on page 3-35

“Saturation” on page 3-36

“Selector” on page 3-37

“S-Function” on page 3-37

“Shift Arithmetic” on page 3-39

“Sign” on page 3-40

“Signal Conversion” on page 3-40

“Signal Specification” on page 3-40

“Sqrt” on page 3-41

“Stateflow” on page 3-41

“Subsystems” on page 3-47

3-6

Block Constraints — Alphabetical List

In this section...

“Sum, Add, Subtract” on page 3-48

“Switch” on page 3-49

“Switch Case” on page 3-50

“Terminator” on page 3-50

“Trigger” on page 3-51

“Trigonometric Function” on page 3-52

“Unit Delay” on page 3-52

“Vector Concatenate” on page 3-53

“Width” on page 3-53

All Blocks

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types Input and output ports must be of
data types among the following:
double, single, int8, uint8,
int16, uint16, int32, uint32,
boolean, or Enumerated with
default value 0. If the block
supports buses:

• Ports can be buses for which the
elements (potentially including
other buses) meet the data type
constraint.

• Ports must not have arrays of
buses.

Nonfatal All block compatibility checks

3-7

3 Block Constraints

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

• Ports must not have buses with
elements that are arrays of
buses.

Block names must not contain
character strings */ or /*.
Additionally, block names must not
end with the character *.

Nonfatal

Input and output ports must be
noncomplex. Complex values are
not supported for code inspection.

Nonfatal

Input and output ports must be
scalars, vectors, or 2D matrices.

Nonfatal

Input and output ports must not
use frame-based signals.

Nonfatal

Output custom signal storage
classes:
• Must have Type set to

Unstructured.

• Must not have Data
initialization set to None.

Nonfatal

Output port must not reference
a signal object with a non-empty
initial value.

Nonfatal

Output port must not be testpointed
when the block has constant (Inf)
sample time.

Nonfatal

Other

Output signal storage class must
be set to Auto when the block has
constant (Inf) sample time.

Nonfatal

3-8

Block Constraints — Alphabetical List

Abs

Abs

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Absolute blocks

Action Port

Action Port

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Ports and
Subsystems blocks >Check
Action Port blocks

Bitwise Operator

Bitwise Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports

Check usage of Logical and
Bit Operations blocks > Check
Bitwise Operator blocks

3-9

3 Block Constraints

Bitwise Operator

Constraint
FATAL /
Nonfatal Compatibility Check

If Number of input ports
(NumInputPorts) is 1 and
Operator (logicop) is set to AND,
OR, NAND, NOR, or XOR, the inport
data type must be scalar. If the
Use bit mask (Usebitmask) check
box is selected, you cannot specify
the Number of input ports.

Nonfatal

Block
Parameters

No block-specific constraints

Bus Assignment

Bus Assignment

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Routing blocks > Check Bus
Assignment blocks

3-10

Block Constraints — Alphabetical List

Bus Creator

Bus Creator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Creator
blocks

Bus Selector

Bus Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Selector
blocks

Constant

Constant

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Constant value (Value) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,

Nonfatal

Check usage of Sources blocks
> Check Constant blocks

3-11

3 Block Constraints

Constant

Constraint
FATAL /
Nonfatal Compatibility Check

be complex, or have two or more
dimensions.

Data Store Memory

Data Store Memory

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types Constraints that apply to allblocks.

Note Since the Data Store
Memory block does not have inports
or outports, the constraints that
apply to inports and outports apply
to the Data Store Memory.

Initial value (InitialValue)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, or have two or
more dimensions.

NonfatalBlock
Parameters

Signal type (SignalType) must
be set to auto or real. Complex
values are not supported for code
inspection.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Memory blocks

3-12

Block Constraints — Alphabetical List

Data Store Memory

Constraint
FATAL /
Nonfatal Compatibility Check

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters > Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

Data Store Read

Data Store Read

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Read blocks

Block
Parameters

The block cannot reference signal
objects as synthesized local data
stores.

Nonfatal Check for usage of
synthesized local data stores
>Verify synthesized local data
store usage

3-13

3 Block Constraints

Data Store Read

Constraint
FATAL /
Nonfatal Compatibility Check

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

Data Store Write

Data Store Write

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Write blocks

Block
Parameters

The block cannot reference signal
objects as synthesized local data
stores.

Nonfatal Check for usage of
synthesized local data stores
>Verify synthesized local data
store usage

3-14

Block Constraints — Alphabetical List

Data Store Write

Constraint
FATAL /
Nonfatal Compatibility Check

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

Data Type Conversion

Data Type Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Input and output to have equal
(ConvertRealWorld) must be Real
World Value (RWV).

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Sample Time (SampleTime) is set
to a constant sample time.

Nonfatal

Block
Parameters

If Saturate on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on), the inport
source must not be a constant
block.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Data Type Conversion blocks

3-15

3 Block Constraints

Data Type Duplicate

Data Type Duplicate

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Data Type Duplicate blocks

Data Type Propagation

Data Type Propagation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Data Propogation Type
blocks

Discrete-Time Integrator

Discrete-Time Integrator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input ports data types must be:
• single or double for non-reset

Nonfatal

Data Types Check usage of Discrete
blocks > Check Discrete
Integrator blocks

3-16

Block Constraints — Alphabetical List

Discrete-Time Integrator

Constraint
FATAL /
Nonfatal Compatibility Check

Inports and outports must be
scalars.

Nonfatal

Output ports data types must
single or double.

Nonfatal

Except for the reset port, input and
output ports should have the same
data type.

Nonfatal

Block parameter Integrator
method (IntegratorMethod) must
be set to one of the following:

• Integration: Forward Euler

• Integration: Backward
Euler

• Integration: Trapezoidal

Nonfatal

Block parameter Show state
port (ShowStatePort) must not be
selected (must be set to off).

Nonfatal

If External reset (ExternalReset)
is not set to none, the source of
Inport 2 must not:

• Be a Constant block.

• Have a constant sample time.

Nonfatal

Block
Parameters

Block parameters Upper
saturation limit
(UpperSaturationLimit)
and Lower saturation limit
(LowerSaturationLimit) must not:

• Be empty, non-finite, or complex.

Nonfatal

3-17

3 Block Constraints

Discrete-Time Integrator

Constraint
FATAL /
Nonfatal Compatibility Check

• Use MATLAB structures.

• Have two or more dimensions.

Block must not be inside a
conditional subsystem.

Nonfatal

When block state resolves to a
signal with a custom signal storage
class, the signal storage class:
• Type must be set to

Unstructured.

• Data initialization must not be
set to None.

Nonfatal

Other

Block state must not resolve to
a signal object with a non-empty
initial value.

Nonfatal

Demux

Demux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Demux blocks

3-18

Block Constraints — Alphabetical List

DocBlock

DocBlock

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types No block-specific constraints

Block
Parameters

No block-specific constraints

Not applicable

Enable Port

Enable Port

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

The signal entering an enable port
of a subsystem must be of data type
boolean.

Nonfatal

Show output port
(ShowOutputPort) must not be
selected (must be set to off).

Nonfatal

Enable Port blocks are not
supported at the root level of the
model.

FATAL

Block
Parameters

The signal entering the Enable
Port of the parent subsystem must
not have a:
• Constant block source.

• Constant sample time.

Nonfatal

Check usage of Ports and
Subsystems blocks > Check
Enable Port blocks

3-19

3 Block Constraints

From

From

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check From blocks

Function-Call Generator

Function-Call Generator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The Number of iterations
(numberOfIterations) must be set
to 1.

Check usage of Ports and
Subsystems blocks>Check
Function Call Generator
blocks

Gain

Gain

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Gain (Gain) must not: be empty,
be nonfinite, have a MATLAB

NonfatalBlock
Parameters

Check usage of Math
Operations blocks > Check
Gain blocks

3-20

Block Constraints — Alphabetical List

Gain

Constraint
FATAL /
Nonfatal Compatibility Check

structure as a value, be complex, or
have two or more dimensions.

Parameter data type
(ParamDataTypeStr) must use
the same data type as the Gain
block input.

Nonfatal

Multiplication
(Multiplication) must be
set to Element-wise(K.*u),
Matrix(K*u), Matrix(u*K), or
Matrix(K*u)(u vector).

Note Only single or double
data types are supported for
Matrix(K*u), Matrix(u*K),
or Matrix(K*u)(u vector)
multiplications methods.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Sample Time (SampleTime) must
not be set to a constant sample
time.

Nonfatal

If Saturate on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on), the inport
source must not be a constant
block.

Nonfatal

3-21

3 Block Constraints

Goto

Goto

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Goto blocks

Ground

Ground

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Sources blocks
> Check Ground blocks

If

If

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Block destination must not be a
terminator block or an empty action
subsystem.

Nonfatal

Check usage of Ports and
Subsystems blocks >Check If
blocks

3-22

Block Constraints — Alphabetical List

If

Constraint
FATAL /
Nonfatal Compatibility Check

Block
Parameters

Source of Inport 1 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Inport

Inport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must be set to
No.

FATAL

Signal Type
(NumberOfTableDimensions) must
not be set to complex.

Nonfatal

Sampling Mode (SamplingMode)
must not be set to Frame based.

Nonfatal

For inports in triggered
subsystems, Latch input
be delaying outside signal
(LatchByDelayingOutsideSignal)
must not selected (must be set to
off).

Nonfatal

Block
Parameters

For root inport blocks that use
a bus object, block parameter
Output as nonvirtual bus

FATAL

Check usage of Sources blocks
> Check Inport blocks

3-23

3 Block Constraints

Inport

Constraint
FATAL /
Nonfatal Compatibility Check

(BusOutputAsStruct) must be
selected (set to on).

Note Shadowed inports are supported for code inspection.

Logical Operator

Logical Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Output ports must be of the data
type boolean or uint8.

Nonfatal

Block must have at least two
inports, except in the case of the
NOT operator.

Nonfatal

Data Types
and Ports

The block input ports should have
the same data type.

Nonfatal

Block
Parameters

No block-specific constraints

Check usage of Logical and
Bit Operations blocks > Check
Logic blocks

3-24

Block Constraints — Alphabetical List

1-D Lookup Table, 2-D Lookup Table, n-D Lookup
Table (1 or 2-D)

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports should have
the same data type.

Nonfatal

Data Types

Input and output ports must be
scalars.

Nonfatal

Number of table dimensions
(NumberOfTableDimensions) must
be set to 1 or 2.

Nonfatal

Interpolation method
(InterpMethod) must be set to
Linear.

Nonfatal

Extrapolation method
(ExtrapMethod) must be set to
Clip or Linear.

Nonfatal

Index search method
(IndexSearchMethod) must be
set to Binary search.

Nonfatal

Begin index search using
previous index result
(BeginIndexSearchUsingPreviousIndexResult)
must not be selected (must be
set to off).

Nonfatal

Support tunable table
size in code generation
(SupportTunableTableSize) must
not be selected (must be set to off).

Nonfatal

Remove protection against
out-of-range input in generated

Nonfatal

Block
Parameters

Check usage of Lookup Tables
blocks > Check Lookup Table
blocks

3-25

3 Block Constraints

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

code (RemoveProtectionInput)
must be selected (must be set to on).

Saturate on integer overflow
(SaturateOnIntegerOverflow)
must not be selected (must be set
to off).

Nonfatal

Fraction > Data Type
(FractionDataTypeStr) must
be set to double or single.

Nonfatal

Table data (Table) must not:
be empty, be nonfinite, have a
MATLAB structure as a value,
be complex, or have two or more
dimensions.

Nonfatal

Breakpoints 1
(BreakpointsForDimension1)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, or have two or
more dimensions.

Nonfatal

Breakpoints 2
(BreakpointsForDimension2)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, or have two or
more dimensions.

Nonfatal

Breakpoints 1
(BreakpointsForDimension1DataTypeStr)
must use the same data type as the
block input.

Nonfatal

Breakpoints 2
(BreakpointsForDimension2DataTypeStr)

Nonfatal

3-26

Block Constraints — Alphabetical List

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

must use the same data type as the
block input.

Table data (TableDataTypeStr)
must use the same data type as the
block output.

Nonfatal

Intermediate Results
(IntermediateResultsDataTypeStr)
must use the same data type as the
block output.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Math Function

Math Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports Input and output ports should have

the same data type.
Nonfatal

Function (Operator) must
be set to one of the following
values: exp, log, 10^u, log10,
magnitude^2, square, transpose,
pow, reciprocal, hypot, rem, or
mod. You cannot select conj or
hermitian.

NonfatalBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Math blocks

3-27

3 Block Constraints

Merge

Merge

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types
and Ports

Constraints that apply to all blocks.

Initial output (InitialOutput)
must be 0.

Nonfatal

Allow unequal port widths
(AllowUnequalInputPortWidths)
must not be selected (must be set
to off).

Nonfatal

Block
Parameters

Input port offsets
(InputPortOffsets) must be
[].

Nonfatal

Check usage of Signal Routing
blocks >Check Merge blocks

MinMax

MinMax

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports must be of
a data type among the following:
double, single, int8, uint8,
int16, uint16, int32, or uint32.

Nonfatal

Input and output ports should have
the same data type.

Nonfatal

Data Types

Block must have at least two
inports.

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Minmax blocks

3-28

Block Constraints — Alphabetical List

Model

Model

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Model argument values
(for this instance)
(ParameterArgumentValues)
must not be complex, non-finite, or
a MATLAB structure.

Nonfatal

Block
Parameters

If the block has variants, then
either of the following constraints
apply:
• Generate preprocessor
conditionals
(GeneratePreprocessorConditionals)
must not be selected (must be
set to off).

• Model Configuration
Parameters >
Code Generation >
Interface > Generate
preprocessor conditionals
(GeneratePreprocessorConditionals)
must be set to Disable all.

Nonfatal

Other The model reference must not be in
protected mode.

FATAL

Check usage of Ports and
Subsystems blocks > Check
Model Reference blocks

3-29

3 Block Constraints

Model Info

Model Info

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types No block-specific constraints

Block
Parameters

No block-specific constraints

Not applicable

Multiport Switch

Multiport Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Data input and output ports must
have the same data type.

Nonfatal

Data Types
and Ports

Block must have at least three
inports.

Nonfatal

If data port indices are specified
for a Multiport Switch block, there
can be only one value specified per
input.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Allow different data input sizes
(AllowDiffInputSizes) must not
be selected (must be set to off).

Nonfatal

Data port for default case
(DataPortForDefault) must be set
to Last data port.

Nonfatal

Block
Parameters

Check usage of Signal
Routing blocks > Check
Multiport Switch blocks

3-30

Block Constraints — Alphabetical List

Multiport Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Source of Inport 1 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Mux

Mux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Mux blocks

Outport

Outport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must be set to
No.

FATALBlock
Parameters

Check usage of Sinks blocks >
Check Outport blocks

3-31

3 Block Constraints

Outport

Constraint
FATAL /
Nonfatal Compatibility Check

Signal type
(NumberOfTableDimensions) must
not be set to complex.

Nonfatal

Sampling mode (SamplingMode)
must not be set to Frame based.

Nonfatal

Root level outport Initial output
(InitialOutput) must be [].

Nonfatal

Source of initial output value
(SourceOfInitialOutputValue)
must be set to Dialog.

Nonfatal

Initial output (InitialOutput)
must not be complex or a MATLAB
structure.

Nonfatal

Probe

Probe

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block parameter Data
type for sample time
(ProbeSampleTimeDataType)
must be single or double.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Probe blocks

3-32

Block Constraints — Alphabetical List

Product

Product

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Multiplication (Multiplication)
must be set to Element-wise(.*)
or Matrix (*).

Note Only single or double data
types are supported for Matrix (*)
multiplication.

Nonfatal

Block parameter Number of
inputs (inputs) must be set to 2,
**, /*, */, //, or / when both of the
following are true:

• Inport Signal type is a matrix.

• Product block parameter
Multiplication is set to Matrix
(*).

Nonfatal

Block parameter Number of
inputs (inputs) must be set to 2,
**, /*, */, or // when both of the
following are true:

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Nonfatal

Block
Parameters

Check usage of Math
Operations blocks > Check
Product blocks

3-33

3 Block Constraints

Product

Constraint
FATAL /
Nonfatal Compatibility Check

Block parameter Number of
inputs (inputs) must be set to /
when both of the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Sample Time (SampleTime) must
not be set to a constant sample
time.

Nonfatal

If Saturate on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on), the source of
any inport must not be a constant
block.

Nonfatal

Relational Operator

Relational Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Block output port data type must
be either an enumerated type with
default value 0, or boolean.

Nonfatal

Data Types Check usage of Logical and
Bit Operations blocks > Check
Relational Operator blocks

3-34

Block Constraints — Alphabetical List

Relational Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Block input ports should have the
same data type.

Nonfatal

Block
Parameters

Relational operator (Operator)
must be set to <=, ==, >=, ~=, <, or >
(not isInf, isNaN, or isFinite).

Nonfatal

Reshape

Reshape

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks> Check
Reshape blocks

Rounding Function

Rounding Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to allblocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks > Check
Rounding Function blocks

3-35

3 Block Constraints

Saturation

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, or have two or more
dimensions.

Nonfatal

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, or have two or more
dimensions.

Nonfatal

The source of the upper limit value
must be block parameter Upper
limit rather than input ports
(UpperLimitSource must be set to
dialog).

Nonfatal

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of
Discontinuities blocks >
Check Saturate blocks

3-36

Block Constraints — Alphabetical List

Selector

Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Inports and outports must be
scalars or vectors.

Nonfatal

Block
Parameters

Must use one-dimensional inputs
and must specify indices using the
block dialog (not using port-based
indexing).

Nonfatal

Check usage of Signal
Routing blocks > Check
Selector blocks

S-Function

Note Simulink Code Inspector supports S-functions created using the
current release of the Legacy Code Tool.

S-Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Arguments must be scalars, or
vectors of fixed dimension.

Nonfatal

S-function parameters
(Parameters) must not be complex,
non-finite, or a MATLAB structure.

NonfatalBlock
Parameters

S-functions:
• Must be created using the
current release of the Legacy
Code Tool.

Nonfatal

Check usage of User-Defined
Function blocks > Check
S-Function blocks

3-37

3 Block Constraints

S-Function

Constraint
FATAL /
Nonfatal Compatibility Check

• Can only specify an
OutputFcnSpec (not
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec).

• Can not have more than one
dwork.

Note When you use the Legacy
Code Tool to define an S-Function
prototype, the:

• Data must be a scalar or a
one-dimensional vector. Do not
use a two-dimensional vector.
For example, use u[6], not
u[2][3].

• Dimension must be explicitly set.
For example, use u[6], not u[].

3-38

Block Constraints — Alphabetical List

Shift Arithmetic

Shift Arithmetic

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports No block-specific constraints

Diagnostic for out of range shift
value (DiagnosticForOORShift)
must be set to Error.

Nonfatal

Binary points to shift
(BinPtShiftNumber) must be
set to 0.

Nonfatal

Bits to shift: Number
(BitShiftNumber) must be
within the allowable range of the
inport data type.

Nonfatal

Block
Parameters

If Bits to shift: Source
(BitShiftNumberSource) is set
to Input port and Bits to shift:
Direction (BitShiftDirection) is
set to Bidirectional, the source of
Inport 2 must not:

• Be a Constant block.

• Have a constant sample time.

Nonfatal

Check usage of Logical and
Bit Operations blocks > Check
ArithShift blocks

3-39

3 Block Constraints

Sign

Sign

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks>Check
Sign blocks

Signal Conversion

Signal Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Output (ConversionOutput) must
be set to Signal copy.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Signal Conversion blocks

Signal Specification

Signal Specification

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Variable-size signal
(VarSizeSig) must be No.

FATAL

Signal type (SignalType) must
not be complex.

Nonfatal

Block
Parameters

Check usage of Signal
Attributes blocks > Check
Signal Specification blocks

3-40

Block Constraints — Alphabetical List

Signal Specification

Constraint
FATAL /
Nonfatal Compatibility Check

Sampling mode (SamplingMode)
must not be Frame based.

Nonfatal

Sqrt

Sqrt

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Block inputs and outports must
have the same data type.

Nonfatal

Data Types

Block inputs and outports data
types must be single or double.

Nonfatal

Function (Operator) must be sqrt
or signedSqrt.

NonfatalBlock
Parameters

Output signal type
(OutputSignalType) must not
be set to complex.

Nonfatal

Check usage of Math
Operations blocks > Check
Sqrt blocks

Stateflow

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Stateflow
blocks Function packaging

(RTWSystemCode) must be set
to Inline.

Check usage of Stateflow
blocks

3-41

3 Block Constraints

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Stateflow data must not be of
machine scope.

Nonfatal Check for Stateflow machine
data > All Stateflow data must
be parented by a Stateflow
chart

Stateflow
Data and
Event
Types

Stateflow events must not be of
machine scope.

Nonfatal Check for Stateflow machine
events > All Stateflow events
must be parented by a
Stateflow chart

The chart must not contain control
flow cycles.

FATAL Check usage of Stateflow
charts > Check that control
flows do not have cycles

The chart must not contain any of
the following objects:
• Boxes

• States

• Subcharts

• Graphical functions

• MATLAB functions

• Truth Tables

• Simulink functions

FATAL Check usage of Stateflow
charts > Check usage of
Stateflow object palette

Chart property Action Language
must be set to C.

FATAL Check usage of Stateflow
charts > Check that all charts
specify ’C’ as their action
language

Chart property Update method
must be set to Inherited.

Nonfatal Check usage of Stateflow
charts > Check that all charts
specify ’Inherited’ as their
update method

Stateflow
Charts

3-42

Block Constraints — Alphabetical List

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Chart property Execute (enter)
Chart at Initialization must not
be selected.

Nonfatal Check usage of Stateflow
charts > Check that no charts
execute at initialization

Chart property Saturate on
integer overflow must not be
selected.

Nonfatal Check usage of Stateflow
charts > Check that no charts
specify saturation on overflow
for integer operations

Chart property Support
variable-size arrays must
not be selected.

FATAL Check usage of Stateflow
charts > Check that no charts
support variable-size arrays

The chart must not contain
unstructured control flow.

FATAL Check usage of Stateflow
charts > Check that control
flows are structured

The control flow must not have
more than 1 default transition.

Nonfatal Check usage of Stateflow
charts > Check that all control
flows have unique default
transitions

Action must be for one of these
operations:

• := or =

• + , += , -, or -=

• * , *=, / or /=

• &, && or &=

• |, || or |=

• << or >>

• cast()

• ^ or ^=

• %% or <

Nonfatal Check usage of Stateflow
transitions > Check
that actions do not have
unsupported operations

Stateflow
transitions

3-43

3 Block Constraints

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

• <= or ==

• ~= or !=

• <> or >

• >= or ~

Transition condition must be of
boolean data type.

Nonfatal Check usage of Stateflow
transitions > Check that all
transition conditions are of
boolean data type

Action must not access
context-sensitive constants.

Nonfatal Check usage of Stateflow
transitions > Check
that no actions access
context-sensitive constants

Action must not access custom data. Nonfatal Check usage of Stateflow
transitions > Check that no
actions access custom data

Transition must not have an event
trigger.

Nonfatal Check usage of Stateflow
transitions > Check that
no transitions have event
triggers

Transition must not have a
transition action.

Nonfatal Check usage of Stateflow
transitions > Check that
transitions do not have
transition actions

Math functions in actions must
have:

• Single or double type arguments
for the following functions:

- acos, asin, atan

- ceil, cosh, cosh

Nonfatal Check usage of Stateflow
transitions > Check that no
actions contain a function
whose argument is of an
invalid data type

3-44

Block Constraints — Alphabetical List

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

- exp, fabs, floor

- fmod, ldexp, log

- log10, pow, sin

- sinh, sqrt, tan, tanh

• Non-boolean arguments for the
following functions:

- abs, max, min

• Integer type argument for the
labs function.

Action must not contain a binary
operator with mixed data type
operands.

Nonfatal Check usage of Stateflow
transitions > Check that no
actions contain a binary
operator whose operands are
of mixed data type

Transition must not have a function
with more than 2 arguments.

Nonfatal Check usage of Stateflow
transitions > Check that no
transitions have a function
with more than 2 arguments

Actions must not access time. Nonfatal Check usage of Stateflow
transitions > Check that no
actions access time (t)

3-45

3 Block Constraints

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Non-terminating junctions must
have exactly one unconditional
transition exiting them.

FATAL Check usage of Stateflow
junctions > Check
that non-terminating
junctions have exactly
one unconditional exiting
transition

Chart must not contain a history
junction.

Nonfatal Check usage of Stateflow
junctions > Check that
the chart uses no history
junctions

Stateflow
Junctions

Unconditional transition must be
last in order of execution.

FATAL Check usage of Stateflow
junctions > Check that
unconditional transitions
execute last in execution
order

Chart data types must be builtin,
enumerated, or bus. If the chart
data type is a bus, the data must
not be arrays of buses or have
elements that are arrays of buses.

Nonfatal Check usage of Stateflow data
> Check that Stateflow data is
of a supported data type

Chart data with scope Output must
not specify initial values.

Nonfatal Check usage of Stateflow data
> Check that the chart does
not specify initial values for
chart data with scope Output

Stateflow
Data

Chart must not use complex data. Nonfatal Check usage of Stateflow data
> Check that the chart uses
only non-complex data

Event scope must be an Output. NonfatalStateflow
Events Event trigger must be a

function-call.
Nonfatal

Check usage of Stateflow
events

3-46

Block Constraints — Alphabetical List

Subsystems

Subsystem, Atomic Subsystem, Enabled Subsystem, Function-Call Subsystem, If
Action Subsystem, Triggered Subsystem

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Subsystems must be one of the
following:
• Virtual

• Enabled

• Function-Call

• If Action

• Inlined Atomic

• Triggered

FATAL

For nonvirtual subsystems,
Function packaging
(RTWSystemCode) must be set
to Inline.

FATAL

Block
Parameters

If the block has variants, then
either of the following constraints
apply:
• Generate preprocessor
conditionals
(GeneratePreprocessorConditionals)
must not be selected (must be
set to off).

• Model Configuration
Parameters >
Code Generation >
Interface > Generate
preprocessor conditionals

Nonfatal

Check usage of Ports and
Subsystems blocks > Check
Subsystem blocks

3-47

3 Block Constraints

Subsystem, Atomic Subsystem, Enabled Subsystem, Function-Call Subsystem, If
Action Subsystem, Triggered Subsystem

Constraint
FATAL /
Nonfatal Compatibility Check

(GeneratePreprocessorConditionals)
must be set to Disable all.

Action subsystems must not
contain model reference blocks
and/or conditional subsystems.

Nonfatal Check usage of Ports and
Subsystems blocks >Check
Action Subsystem blocks

Other

Actions subsystems connected to
the same If or Switch Case blocks
must do one of the following:
• All combine their output and
code updates.

• All separate their output and
code updates.

Nonfatal Check destinations of If and
Switchcase blocks >Check
destination Action subsystem
of If and Switchcase blocks

Sum, Add, Subtract

Sum

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports should have
the same data type.

Nonfatal

Data Types
and Ports

Blocks must have at least two
inports.

Nonfatal

Accumulator data type
(AccumDataTypeStr) must use
the same data type as the block
inputs.

NonfatalBlock
Parameters

Check usage of Math
Operations blocks>Check
Sum blocks

3-48

Block Constraints — Alphabetical List

Sum

Constraint
FATAL /
Nonfatal Compatibility Check

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Sample Time (SampleTime) must
not be set to a constant sample
time.

Nonfatal

If Saturate on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on), the source of
any inport must not be a constant
block.

Nonfatal

Switch

Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

The first and third input ports and
the output port must have the same
data type.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Allow different data input sizes
(AllowDiffInputSizes) must not
be selected (must be set to off).

Nonfatal

Block
Parameters

Source of Inport 2 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Check usage of Signal Routing
blocks > Check Switch blocks

3-49

3 Block Constraints

Switch Case

Switch Case

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types Constraints that apply to all blocks.

Case conditions
(CaseConditions) must not
have a range of values for the input.

Nonfatal

Block destination must not be a
terminator block or an empty action
subsystem.

Nonfatal

Block
Parameters

Source of Inport 1 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Check usage of Ports and
Subsystems blocks >Check
SwitchCase blocks

Terminator

Terminator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Check usage of Sinks blocks >
Check Terminator blocks

Block
Parameters

Block must not be connected to the
outport of a model reference block.

Nonfatal Check for Terminator blocks
connected to Model Reference
block outports>Check
for Terminator block
connectivity

3-50

Block Constraints — Alphabetical List

Trigger

Trigger

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

In the parent subsystem, the signal
entering the trigger port must be
a scalar.

Nonfatal

Data Types

In the parent subsystem, the signal
entering the trigger port must be
boolean when the Trigger type
(TriggerType) is set to rising,
falling, or either.

Nonfatal

Show output port
(ShowOutputPort) must not be
selected (must be set to off).

Nonfatal

Block must not be at the root level
of the model when Trigger type
(TriggerType) is set to rising,
falling, or either.

FATAL

States when enabling
(StatesWhenEnabling) must
not be set to inherit.

Nonfatal

Block
Parameters

The signal entering the Trigger
Port of the parent subsystem must
not have a:
• Constant block source.

• Constant sample time.

Nonfatal

Check usage of Ports and
Subsystems blocks >Check
Trigger Port blocks

3-51

3 Block Constraints

Trigonometric Function

Trigonometric Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Function (Operator) must not
be set to cos + jsin (complex
exponential of the input).

NonfatalBlock
Parameters

Approximation method
(ApproximationMethod) must
be set to None.

Nonfatal

Check usage of Math
Operations blocks > Check
Trigonometry blocks

Unit Delay

Unit Delay

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

When block state resolves to a
signal with a custom signal storage
class, the signal storage class:
• Type must be set to

Unstructured.

• Data initialization must not be
set to None.

Nonfatal

Data Types

Block state must not resolve to
a signal object with a non-empty
initial value.

Nonfatal

Initial conditions (X0) must not:
be empty, be nonfinite, have a
MATLAB structure as a value,

NonfatalBlock
Parameters

Check usage of Discrete
blocks > Check Unit Delay
blocks

3-52

Block Constraints — Alphabetical List

Unit Delay

Constraint
FATAL /
Nonfatal Compatibility Check

be complex, or have two or more
dimensions.

Input Processing
(InputProcessing) must not
be set to Columns as channels
(frame based).

Nonfatal

Vector Concatenate

Vector Concatenate

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Block inports and outports must be
scalars or vectors.

Nonfatal

Block
Parameters

Mode (Mode) must be set to Vector. Nonfatal

Check usage of Signal
Routing blocks > Check
Vector Concatenate blocks

Width

Width

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Width blocks

3-53

3 Block Constraints

Supported Blocks — By Category

In this section...

“Commonly Used Blocks” on page 3-54

“Discontinuity Blocks” on page 3-55

“Discrete Blocks” on page 3-55

“Logic and Bit Operation Blocks” on page 3-55

“Lookup Tables” on page 3-55

“Math Operation Blocks” on page 3-56

“Model-Wide Utilities” on page 3-56

“Port & Subsystem Blocks” on page 3-56

“Signal Attribute Blocks” on page 3-57

“Signal Routing Blocks” on page 3-57

“Sink Blocks” on page 3-58

“Source Blocks” on page 3-58

“User-Defined Functions” on page 3-58

Commonly Used Blocks

• “Bus Creator” on page 3-11

• “Bus Selector” on page 3-11

• “Constant” on page 3-11

• “Data Type Conversion” on page 3-15

• “Demux” on page 3-18

• “Gain” on page 3-20

• “Ground” on page 3-22

• “Inport” on page 3-23

• “Logical Operator” on page 3-24

3-54

Supported Blocks — By Category

• “Mux” on page 3-31

• “Outport” on page 3-31

• “Product” on page 3-33

• “Relational Operator” on page 3-34

• “Saturation” on page 3-36

• “Subsystems” on page 3-47

• “Sum, Add, Subtract” on page 3-48

• “Switch” on page 3-49

• “Terminator” on page 3-50

• “Unit Delay” on page 3-52

Discontinuity Blocks

• “Saturation” on page 3-36

Discrete Blocks

• “Unit Delay” on page 3-52

• “Discrete-Time Integrator” on page 3-16

Logic and Bit Operation Blocks

• “Logical Operator” on page 3-24

• “Relational Operator” on page 3-34

• “Shift Arithmetic” on page 3-39

Lookup Tables

• “1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)” on
page 3-25

3-55

3 Block Constraints

Math Operation Blocks

• “Abs” on page 3-9

• “Gain” on page 3-20

• “Math Function” on page 3-27

• “MinMax” on page 3-28

• “Product” on page 3-33

• “Reshape” on page 3-35

• “Rounding Function” on page 3-35

• “Sign” on page 3-40

• “Sqrt” on page 3-41

• “Sum, Add, Subtract” on page 3-48

• “Trigonometric Function” on page 3-52

Model-Wide Utilities

• “DocBlock” on page 3-19

• “Model Info” on page 3-30

Port & Subsystem Blocks

• “Action Port” on page 3-9

• “Enable Port” on page 3-19

• “Function-Call Generator” on page 3-20

• “If” on page 3-22

• “Inport” on page 3-23

• “Model” on page 3-29

• “Outport” on page 3-31

• “Subsystems” on page 3-47

• “Switch Case” on page 3-50

3-56

Supported Blocks — By Category

• “Trigger” on page 3-51

Signal Attribute Blocks

• “Data Type Conversion” on page 3-15

• “Data Type Duplicate” on page 3-16

• “Data Type Propagation” on page 3-16

• “Probe” on page 3-32

• “Signal Conversion” on page 3-40

• “Signal Specification” on page 3-40

• “Width” on page 3-53

Signal Routing Blocks

• “Bus Assignment” on page 3-10

• “Bus Creator” on page 3-11

• “Bus Selector” on page 3-11

• “Data Store Memory” on page 3-12

• “Data Store Read” on page 3-13

• “Data Store Write” on page 3-14

• “Demux” on page 3-18

• “From” on page 3-20

• “Goto” on page 3-22

• “Merge” on page 3-28

• “Multiport Switch” on page 3-30

• “Mux” on page 3-31

• “Selector” on page 3-37

• “Switch” on page 3-49

• “Vector Concatenate” on page 3-53

3-57

3 Block Constraints

Sink Blocks

• “Outport” on page 3-31

• “Terminator” on page 3-50

Source Blocks

• “Constant” on page 3-11

• “Ground” on page 3-22

• “Inport” on page 3-23

User-Defined Functions

• “S-Function” on page 3-37

3-58

Fatal Incompatibilities

Fatal Incompatibilities
When you inspect code generated from models with a FATAL incompatibility,
code inspection terminates. Code generated from models with FATAL
incompatibilities cannot be verified.

When you inspect code generated from models with nonfatal incompatibilities,
code inspection does not terminate. Although it might not be possible to fully
verify the generated code, code inspection continues. The Simulink Code
Inspector might partially verify the generated code.

You can use the compatibility checks to identify and fix both fatal and
nonfatal incompatibilities.

Parameter or Attribute Constraint Compatibility Check

On the Diagnostics Pane:
Connectivity pane, Bus
signal treated as vector
(StrictBusMsg)

Must be set to error (equivalent
to ErrorOnBusTreatedAs-
Vector specified at the
command line).

Check diagnostic settings >
Verify Bus signal treated as
vector setting

On the Diagnostics
Pane: Connectivity
pane, Non-bus signals
treated as bus signals
(NonBusSignalsTreated-
AsBus)

Must be set to error. Check diagnostic settings
> Verify ’Non-bus signals
treated as bus signals’
setting

On the Code Generation
Pane: General pane,
System target file
(SystemTargetFile)

Must be set to ert.tlc or
the system target file for an
ERT-derived target.

Check system target file
setting

3-59

3 Block Constraints

Parameter or Attribute Constraint Compatibility Check

On the Code Generation
Pane: General pane,
Language (TargetLang)

Must be set to C or C++. Check code generation
settings > Verify ’Language’
setting

On the Code Generation
Pane: Comments pane,
Include comments
(GenerateComments)

Must be selected (set to on).
The Code Inspector parses
autogenerated comments to
obtain traceability information
about model data.

Check code generation
settings > Verify ’Include
comments’ setting

Usage of sample times The model cannot use multiple,
variable, continuous, or
asynchronous sample times.

Check for sample times in
the model

Automatic virtual to
nonvirtual bus conversion

Automatic conversion between
virtual and nonvirtual buses
is not supported for code
inspection. It creates a hidden
Signal Conversion block, which
is not supported for code
inspection.

Check usage of buses
> Check for automatic
conversion between virtual
to non-virtual buses

Block operations on a bus A nonvirtual block cannot
operate on a virtual bus, and a
Unit Delay block cannot operate
on a bus (virtual or nonvirtual).
This constraint simplifies
bus processing to promote
traceability and readability of
generated code.

Check usage of buses >
Verify that no blocks in the
model operate on a virtual
bus

Enable Port block
parameter

Enable Port blocks are not
supported at the root level of
the model.

Check usage of Ports and
Subsystems blocks >Check
Enable Port blocks

Inport block The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must be set
to No.

Check usage of Sources
blocks > Check Inport blocks

3-60

Fatal Incompatibilities

Parameter or Attribute Constraint Compatibility Check

Inport block For root inport blocks that use
a bus object, block parameter
Output as nonvirtual bus
(BusOutputAsStruct) must be
selected (set to on).

Check usage of Sources
blocks > Check Inport blocks

Model Reference block Block must not be in protected
mode.

Check usage of Ports and
Subsystems blocks >Check
Model Reference blocks

Outport block The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must be set
to No.

Check usage of Sinks blocks
> Check Outport blocks

Signal Specification Variable-size signal
(VarSizeSig) must be No.

Check usage of Signal
Attributes blocks > Check
Signal Specification blocks

Stateflow Charts The chart must not contain
control flow cycles.

Check usage of Stateflow
charts > Check that control
flows do not have cycles

Stateflow Charts The chart must not contain any
of the following objects:
• States

• Subcharts

• Graphical functions

• MATLAB functions

• Truth Tables

• Simulink functions

Check usage of Stateflow
charts > Check usage of
Stateflow object palette

Stateflow Charts Chart property Action
Language must be set to
C.

Check usage of Stateflow
charts > Check that all
charts specify ’C’ as their
action language

3-61

3 Block Constraints

Parameter or Attribute Constraint Compatibility Check

Stateflow Charts Chart property Support
variable-size arrays must not
be selected.

Check usage of Stateflow
charts > Check that no
charts support variable-size
arrays

Stateflow Charts The chart must not contain
unstructured control flow.

Check usage of Stateflow
charts > Check that control
flows are structured

Stateflow Junctions Non-terminating junctions must
have exactly one unconditional
transition exiting them.

Check usage of Stateflow
junctions > Check
that non-terminating
junctions have exactly
one unconditional exiting
transition

Stateflow Junctions Unconditional transition must
be last in order of execution.

Check usage of Stateflow
junctions > Check that
unconditional transitions
execute last in execution
order

Subsystems Subsystems must be one of the
following:
• Virtual

• Enabled

• Function-Call

• If Action

• Inlined Atomic

• Triggered

Check usage of Ports and
Subsystems blocks > Check
Subsystem blocks

3-62

Fatal Incompatibilities

Parameter or Attribute Constraint Compatibility Check

Subsystem block parameter For nonvirtual subsystems,
Function packaging
(RTWSystemCode) must be
set to Inline.

Check usage of Ports and
Subsystems blocks > Check
Subsystem blocks

Trigger block parameter Block must not be at the root
level of the model when Trigger
type (TriggerType) is set to
rising, falling, or either.

Check usage of Ports and
Subsystems blocks > Check
Trigger Port blocks

3-63

3 Block Constraints

Supported Mask Blocks
Code inspection is supported for the following mask blocks, which can also be
viewed in the slcilib block library.

“Block Libraries” Mask Block

“Discontinuities” • Dead Zone Dynamic

• Saturation Dynamic

• Wrap To Zero

“Discrete” • Difference

“Logic and Bit Operations” • Bit Clear

• Bit Set

• Compare To Constant

• Compare To Zero

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

• Interval Test

• Interval Test Dynamic

“Math Operations” • MinMax Running Resettable

“Signal Attributes” • Data Type Conversion Inherited

3-64

Supported Mask Blocks

“Block Libraries” Mask Block

“Additional Math and Discrete”
> Additional Discrete

• Unit Delay Enabled

• Unit Delay Enabled External IC

• Unit Delay Enabled Resettable

• Unit Delay Enabled Resettable External IC

• Unit Delay External IC

• Unit Delay Resettable

• Unit Delay Resettable External IC

• Unit Delay With Preview Enabled

• Unit Delay With Preview Enabled Resettable

• Unit Delay With Preview Enabled Resettable External RV

• Unit Delay With Preview Resettable

• Unit Delay With Preview Resettable External RV

“Additional Math and Discrete”
> Additional Math: Increment
— Decrement

• Decrement Real World

• Increment Real World

3-65

3 Block Constraints

3-66

4

Model Advisor Checks

4 Model Advisor Checks

Simulink Code Inspector Checks

In this section...

“Simulink® Code Inspector™ Checks Overview” on page 4-4

“Check code generation settings” on page 4-5

“Check data import/export settings” on page 4-10

“Check diagnostic settings” on page 4-11

“Check hardware implementation settings” on page 4-14

“Check optimization settings” on page 4-16

“Check solver settings” on page 4-19

“Check for unconnected objects in the model” on page 4-20

“Check system target file setting” on page 4-21

“Check function specification setting” on page 4-22

“Check for Stateflow machine data” on page 4-23

“Check for Stateflow machine events” on page 4-24

“Check conditional input branch execution setting” on page 4-25

“Check for unsupported blocks” on page 4-26

“Check storage class for workspace variables” on page 4-27

“Check for sample times in the model” on page 4-29

“Check for Signal Conversion blocks automatically inserted on signals
entering block input ports” on page 4-30

“Check for usage of fixed-point instrumentation” on page 4-31

“Check for root Outport blocks being conditionally assigned” on page 4-32

“Check for usage of synthesized local data stores” on page 4-33

“Check loop unrolling threshold setting” on page 4-33

“Check usage of global data stores” on page 4-35

“Check destinations of If and Switchcase blocks” on page 4-36

4-2

Simulink® Code Inspector™ Checks

In this section...

“Check for root Outport blocks that have non-auto storage class” on page
4-37

“Check for Terminator blocks connected to Model Reference block outports”
on page 4-37

“Check for root Outport blocks being testpointed” on page 4-38

“Check usage of Sources blocks” on page 4-39

“Check usage of Signal Routing blocks” on page 4-44

“Check usage of Math Operations blocks” on page 4-66

“Check usage of Signal Attributes blocks” on page 4-85

“Check usage of Logical and Bit Operations blocks” on page 4-95

“Check usage of Lookup Tables blocks” on page 4-102

“Check usage of User-Defined Function blocks” on page 4-106

“Check usage of Ports and Subsystems blocks” on page 4-109

“Check usage of Discontinuities blocks” on page 4-123

“Check usage of Sinks blocks” on page 4-126

“Check usage of Discrete blocks” on page 4-130

“Check usage of Stateflow blocks” on page 4-135

“Check usage of Stateflow charts” on page 4-137

“Check usage of Stateflow transitions” on page 4-139

“Check usage of Stateflow junctions” on page 4-142

“Check usage of Stateflow data” on page 4-143

“Check usage of Stateflow events” on page 4-144

“Check usage of root Outport blocks” on page 4-145

“Check usage of buses” on page 4-146

4-3

4 Model Advisor Checks

Simulink Code Inspector Checks Overview
Use Simulink Code Inspector Model Advisor checks to configure your model
for code inspection.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Embedded Coder® Checks”

• “Simulink Verification and Validation™ Checks”

4-4

Simulink® Code Inspector™ Checks

Check code generation settings
Check code generation settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that code generation settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Language’
setting

The model is configured to generate
C++ (Encapsulated) files.

In the Configuration Parameters
dialog box, on the Code Generation
pane, set Language to C or C++.

Verify
’Shared code
placement’
setting

The model is not configured to
generated shared utility code to a
shared location. If shared utility
code is generated into model.c, the
Code Inspector reports the code as
unverified.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Shared code
placement to Shared location.
Using a shared location for utility
functions, macros, and user-defined
data types promotes debugging and
traceability of generated code.

Verify ’Source
file’ setting

Custom code is configured to appear
near the top of the generated model
source file.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Source file field.

Verify ’Header
file’ setting

Custom code is configured to appear
near the top of the generated model
header file.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Header file field.

Verify
’Initialize
function’
setting

Custom code is configured to appear
in the generated model initialize
function.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Initialize function field.

4-5

4 Model Advisor Checks

Subcheck Condition Recommended Action

Verify
’Terminate
function’
setting

Custom code is configured to appear
in the generated model terminate
function.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code and clear the
Terminate function field.

Verify
’Combine
signal/state
structures’
setting

The model is configured to combine
global block signals and global state
data into one data structure in the
generated code. This is not supported
for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the
Combine signal/state structures
parameter.

Verify ’Include
comments’
setting

The model is configured to omit
autogenerated comments from
generated code files. The Code
Inspector parses autogenerated
comments to obtain traceability
information about model data.

In the Configuration Parameters
dialog box, on the Code Generation
> Comments pane, select Include
comments.

Verify
’Generate
scalar inlined
parameter as’
setting

The model is configured to generate
scalar inlined parameters as
variables with #define macros,
rather than as numeric constants.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Generate
scalar inlined parameter as to
Literals.

Verify
’Preserve
condition
expression in
if statement’
setting

The model is configured to optimize
empty primary condition expressions
in if statements by negating them,
rather than preserving the empty
primary condition expressions.

In the Configuration Parameters
dialog box, on the Code Generation
> Code Style pane, select Preserve
condition expression in if
statement.

Verify ’Replace
data type
names in the
generated code’
setting

The model is configured to replace
built-in data type names with
user-defined data type names in
the generated code. Data type
replacement is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Data Type Replacement pane,
clear the Replace data type names
in the generated code parameter.

4-6

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Code
replacement
library’ setting

A code replacement library other
than C89/C90 (ANSI), ANSI_C, C99
(ISO), or ISO_C is selected for the
model.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Code
replacement library to C89/C90
(ANSI), ANSI_C, C99 (ISO), or
ISO_C. The check fails if you do not
select C89/C90 (ANSI), ANSI_C, C99
(ISO), or ISO_C. However, if you
create your library using “Supported
Functions and Operations in Code
Replacement Libraries” on page 2-23,
Simulink Code Inspector does inspect
the generated code.

Verify ’Classic
call interface’
setting

The model is configured to generate
model function calls compatible
with the main program module of a
pre-R2011a GRT target. The classic
call interface is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Classic
call interface parameter.

Verify
’Terminate
function
required’
setting

The model is configured to generate
a model_terminate function,
potentially containing model
termination code to be executed
during system shutdown. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the
Terminate function required
parameter.

Verify
’MAT-file
logging’ setting

The model is configured to log
execution data to a MAT-file. This is
not supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear theMAT-file
logging parameter.

Verify
’non-finite
numbers’
setting

The model is configured to generate
nonfinite data (for example, NaN and
Inf) and related operations. This is
not supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Support:
non-finite numbers parameter.

4-7

4 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’absolute
time’ setting

The model is configured to generate
and maintain integer counters for
absolute and elapsed time values.
This is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Support:
absolute time parameter.

Verify
’Suppress
error status in
real-timemodel
data structure’
setting

The model is configured to include
an error status field in a generated
rtModel data structure. The rtModel
data structure is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, select Suppress
error status in real-time model
data structure.

Verify
’IncludeERT-
FirstTime’
setting

The model is configured to include
the firstTime argument in the
generated model_initialize
function. This is not supported for
code inspection.

In the MATLAB Command
Window, set the model parameter
IncludeERTFirstTime to off.
For example, set_param(gcs,
'IncludeERTFirstTime', 'off').

Verify ’Create
block’ setting

The model is configured to generate
a SIL or PIL block during code
generation. This is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Verification pane, set Create
block to None.

Verify ’Measure
function
execution
times’ setting

The model is configured to generate
code with instrumentation to collect
execution times for functions inside
the generated code. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Verification pane, clear the
Measure function execution
times parameter.

Verify ’Signal
naming’ setting

The model is configured to change
signal names when creating
corresponding identifiers in the
generated code.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Signal naming
to None.

Verify
’Parameter
naming’ setting

The model is configured to change
parameter names when creating
corresponding identifiers in the
generated code.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Parameter
naming to None.

4-8

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’TLC
options’ setting

The model is configured with TLC
options.

In the Configuration Parameters
dialog box, on the Code Generation
pane, clear the TLC options field.

Verify Code
Generation
> Interface
> Interface
setting

The model is configured to generate
code for C API, external mode, or
ASAP2 data interfaces. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Interface to
None.

Verify ’Single
output/update
function’
setting

The model is configured to generate
code in separate model_output and
model_update functions, rather than
a model_step function that combines
the two.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, select Single
output/update function.

See Also
Simulink Configuration Parameter Constraints

4-9

4 Model Advisor Checks

Check data import/export settings
Check data import/export settings in the model configuration that might
impact compatibility with Simulink Code Inspector.

Description
This check verifies that data import/export settings are compatible with
code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Initial
state’ setting

The model is configured to load initial
states from a workspace, which is not
compatible with code inspection.

In the Configuration Parameters
dialog box, on the Data
Import/Export pane, clear the
Initial state parameter.

See Also
Simulink Configuration Parameter Constraints

4-10

Simulink® Code Inspector™ Checks

Check diagnostic settings
Check diagnostic settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that diagnostic settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Invalid root
Inport/Outport
block
connection’
setting

The model is not configured to
generate an error if Simulink
software detects invalid internal
connections to the root-level Inport
or Outport blocks. This potentially
allows automatic insertion of hidden
signal copy blocks at the model
inports and outports, which is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Diagnostics
> Model Referencing pane, set
Invalid root Inport/Outport block
connection to error. If an error is
generated, it identifies the locations
at which you can manually insert
Signal Conversion blocks to avoid the
error and maintain traceability.

Verify ’Detect
write after
write’ setting

The model is not configured to
generate an error when Simulink
software attempts to write data to a
data store twice in succession in the
current time step.

In the Configuration Parameters
dialog box, on the Diagnostics
> Data Validity pane, set
Detect write after write to
EnableAllAsError.

Verify
’Underspecified
initialization
detection’
setting

The model is not configured to
initialize block initial conditions
using simplified behavior. The
simplified behavior can improve the
consistency of model results.

In the Configuration Parameters
dialog box, on the Diagnostics
> Data Validity pane, set
Underspecified initialization
detection to Simplified.

4-11

4 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’Non-bus
signals treated
as bus signals’
setting

The model is not configured to
generate an error when Simulink
software implicitly converts a
non-bus signal to a bus signal to
support connecting the signal to a
Bus Assignment or Bus Selector
block.

In the Configuration Parameters
dialog box, on the Diagnostics >
Connectivity pane, set Non-bus
signals treated as bus signals to
error.

Verify ’Detect
downcast’
setting

The model is not configured to
generate an error when a parameter
downcast occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
downcast to error.

Verify ’Detect
overflow’
setting

The model is not configured to
generate an error when a parameter
overflow occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
overflow to error.

Verify ’Detect
underflow’
setting

The model is not configured to
generate an error when a parameter
underflow occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
underflow to error.

Verify ’Detect
precision loss’
setting

The model is not configured to
generate an error when parameter
precision loss occurs during
simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
precision loss to error.

Verify ’Detect
loss of
tunability’
setting

The model is not configured
to generate an error when an
expression with tunable variables is
reduced to its numerical equivalent.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect loss
of tunability to error.

Verify Bus
signal treated
as vector
setting

The model is not configured to
generate an error when Simulink
software detects a virtual bus signal
that is used as a mux signal. Strict
bus behavior is not enforced.

In the Configuration Parameters
dialog box, on the Diagnostics >
Connectivity pane, set Bus signal
treated as vector to error.

4-12

Simulink® Code Inspector™ Checks

See Also
Simulink Configuration Parameter Constraints

4-13

4 Model Advisor Checks

Check hardware implementation settings
Check hardware implementation settings in the model configuration that
might impact compatibility with Simulink Code Inspector.

Description
This check verifies that hardware implementation settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’char’
setting

The bit length of character data for
the production hardware does not
equal 8.

Verify ’short’
setting

The bit length of short data for the
production hardware does not equal
16.

Verify ’int’
setting

The bit length of int data for the
production hardware does not equal
32.

Verify ’long’
setting

The bit length of long data for the
production hardware does not equal
32.

Verify ’float’
setting

The bit length of floating-point data
for the production hardware does not
equal 32.

Verify ’double’
setting

The bit length of double data for the
production hardware does not equal
64.

Verify ’pointer’
setting

The bit length of pointer data for the
production hardware does not equal
32.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, select a
production hardware Device type
that is compatible with the settings
in this table.

4-14

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’native’
setting

The microprocessor native word size
for the production hardware does not
equal 32 bits.

Verify ’Signed
integer
division rounds
to’ setting

The method of producing a signed
integer quotient for the production
hardware is not to choose the integer
that is closer to zero (Zero method).

Verify ’Shift
right on a
signed integer
as arithmetic
shift’ setting

The method by which the compiler
implements signed integer right shift
for the production hardware is not an
arithmetic right shift.

Verify ’None’
setting

The test hardware differs from the
deployment hardware.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, under
Emulation hardware (code
generation only), select None.

Verify ’Device
vendor->Device
type‘ setting

The device vendor and device type
are ASIC/FPGA.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, under
Embedded hardware (simulation
and code generation), do not select
Device vendor ASIC/FPGA.

See Also
Simulink Configuration Parameter Constraints

4-15

4 Model Advisor Checks

Check optimization settings
Check optimization settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that optimization settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’AdvancedOptControl’
setting

The model is not configured to disable
optimizations that are incompatible
with Simulink Code Inspector.

In the MATLAB Command
Window, set the model parameter
AdvancedOptControl to -SLCI.
For example, set_param(gcs,
'AdvancedOptControl', '-SLCI').

Verify
’Implement
logic signals as
Boolean data
(vs. double)’
setting

The model is configured to implement
logic signals with the double data
type, rather than with the more
memory-efficient boolean data type.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Implement logic
signals as Boolean data (vs.
double).

Verify
’Optimize
initialization
code for model
reference’
setting

The model is configured to generate
initialization code for blocks that
have states, without an optimization
that can produce more efficient code
for referenced models.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Optimize
initialization code for model
reference.

Verify ’Remove
code from
floating-point
to integer
conversions
that wraps
out-of-range
values’ setting

The model is configured not to
remove wrapping code that handles
out-of-range floating-point to integer
conversion results when out-of-range
conversions occur.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Remove code
from floating-point to integer
conversions that wraps
out-of-range values.

4-16

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Remove
code from
floating-point
to integer
conversions
with saturation
that maps NaN
to zero’ setting

The model is configured to remove
code that handles floating-point to
integer conversion results for NaN
values when mapping from NaN to
integer zero occurs.

In the Configuration Parameters
dialog box, on the Optimization
pane, clear the Remove code
from floating-point to integer
conversions with saturation that
maps NaN to zero parameter.

Verify ’Remove
code that
protects
against
division
arithmetic
exceptions’
setting

The model is configured to remove
code that guards against division by
zero for fixed-point data.

In the Configuration Parameters
dialog box, on the Optimization
pane, clear the Remove code
that protects against division
arithmetic exceptions parameter.

Verify
‘Maximum
stack size
(bytes)’ setting

The model is configured with a
maximum stack size.

In the Configuration Parameters
dialog box, on the Optimization >
Signals and Parameters pane, set
the Maximum stack size (bytes)
to inf.

Verify ’Pack
Boolean data
into bitfields’
setting

The model is configured to store
Boolean signals as one-bit bitfields.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
clear the Pack Boolean data into
bitfields parameter.

Verify ’Simplify
array indexing’
setting

The model is configured to generate
code that replaces multiply
operations with add operations in
array indices when accessing arrays
in a loop.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
clear the Simplify array indexing
parameter.

Verify ‘Use
bitsets for
storing
Boolean data’
setting

The model is configured to use bitsets
for storing Boolean data.

In the Configuration Parameters
dialog box, on the Optimization
> Stateflow pane, clear the Use
bitsets for storing Boolean data
parameter.

4-17

4 Model Advisor Checks

See Also
Simulink Configuration Parameter Constraints

4-18

Simulink® Code Inspector™ Checks

Check solver settings
Check solver settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that solver settings are compatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Type’
setting

The model is configured with a
variable-step solver.

In the Configuration Parameters
dialog box, on the Solver pane, set
Type to Fixed-step.

Verify ’Solver’
setting

The model is configured with a solver
other than a fixed-step discrete
solver.

In the Configuration Parameters
dialog box, on the Solver pane,
set Solver to discrete (no
continuous states) (equivalent to
FixedStepDiscrete specified at the
command line).

See Also
Simulink Configuration Parameter Constraints

4-19

4 Model Advisor Checks

Check for unconnected objects in the model
Check for unconnected ports and lines in the model.

Description
This check reports unconnected lines, input ports, and output ports in the
model or subsystem.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
unconnected
objects

One or more lines, input ports,
or output ports are not properly
connected in the model or subsystem.
This can result in dead code or hidden
ground blocks.

Connect or remove the affected
blocks.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-20

Simulink® Code Inspector™ Checks

Check system target file setting
Check whether a compatible system target file is selected for the model.

Description
This check verifies that the System target file selected for the model is
ert.tlc or is derived from ert.tlc.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify system
target file
setting

The system target file selected for
the model is not ert.tlc or an
ERT-derived target.

In the Configuration Parameters
dialog box, on the Code Generation
pane, set System target file to
ert.tlc or an ERT-derived target.

See Also
Simulink Configuration Parameter Constraints

4-21

4 Model Advisor Checks

Check function specification setting
Check for function specification settings that might impact compatibility
with Simulink Code Inspector.

Description
This check verifies that function prototype control settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check model
interface
settings

The model specifies custom function
prototypes for model entry functions.
This is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, click Configure
Model Functions to open the
Model Interface dialog box, and
set Function specification to
Default model initialize and
step functions.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-22

Simulink® Code Inspector™ Checks

Check for Stateflow machine data
Check the model for Stateflow data of machine scope. Data of machine scope
is incompatible with Simulink Code Inspector

Description
This check verifies that the model does not contain Stateflow data of machine
scope.

Results and Recommended Actions

Subcheck Condition Recommended Action

All Stateflow
data must be
parented by a
Stateflow chart

The model contains Stateflow data of
machine scope.

Modify model so that it does not
contain Stateflow data of machine
scope.

See Also
“Data Specification”

4-23

4 Model Advisor Checks

Check for Stateflow machine events
Check the model for Stateflow events of machine scope. Events of machine
scope are incompatible with Simulink Code Inspector

Description
This check verifies that the model does not contain Stateflow events of
machine scope.

Results and Recommended Actions

Subcheck Condition Recommended Action

All Stateflow
events must be
parented by a
Stateflow chart

The model contains Stateflow events
of machine scope.

Modify model so that it does not
contain Stateflow events of machine
scope.

See Also
“Input and Output Events”

4-24

Simulink® Code Inspector™ Checks

Check conditional input branch execution setting
If the model is using conditional input branch execution, check that local
block outputs are enabled.

Description
This check verifies that the model configuration parameter Enable local
block outputs is selected when Conditional input branch execution is
selected.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
conditional
input branch
execution
setting

The model configuration parameter
Conditional input branch
execution is selected, but Enable
local block outputs is not selected.
The model must enable local block
outputs when using conditional input
branch execution.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
select Enable local block outputs.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-25

4 Model Advisor Checks

Check for unsupported blocks
Check for blocks that are not supported by Simulink Code Inspector.

Description
This check updates the model diagram and reports blocks that are not
supported by Simulink Code Inspector.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
blocks not
supported by
Simulink Code
Inspector

One or more blocks in the model are
not supported for code inspection.

Note Supported blocks are listed in
“Supported Blocks — By Category”
on page 3-54 and “Supported Mask
Blocks” on page 3-64, and also can be
viewed in the slcilib block library.

Possible actions include:

• Replace an unsupported block
with a supported block.

• Replace an unsupported block
with an equivalent combination of
supported blocks.

• Replace an unsupported block
with an S-Function block created
using the Legacy Code Tool.

• If one or more unsupported blocks
cannot be removed, use referenced
models to isolate the unsupported
block(s), and/or use a partial
verification work flow that omits
the unsupported block(s).

See Also

• “Fix or Work Around Unsupported Blocks”

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-26

Simulink® Code Inspector™ Checks

Check storage class for workspace variables
Check for workspace variables referenced by the model.

Description
This check reports workspace variables that use unsupported storage classes.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check storage
class for
workspace
variables
referenced by
the model

Workspace variables referenced by
the model are not supported for one
or both of these reasons:
• The “Custom Storage Classes”
Type is not set to Unstructured.

• Workspace variable is tunable,
with data type set to struct.

Note In Simulink or module
packaging tool (MPT) classes
shipped with MathWorks® code,
code inspection is supported for the
following storage classes:

• Global

• Const

• Volatile

• Constvolatile

• Define

• Imporeddefine

• Exporttofile

Modify the model so that the
model does not reference workspace
variables or set the workspace
variable Type to Unstructured.

4-27

4 Model Advisor Checks

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-28

Simulink® Code Inspector™ Checks

Check for sample times in the model
Check for sample time characteristics that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports instances of multiple,
variable, continuous, or asynchronous sample times.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check sample
times

The model is using multiple, variable,
continuous, or asynchronous sample
times. This is not supported for code
inspection.

Modify the model such that
multiple, variable, continuous, or
asynchronous sample times are not
being used.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-29

4 Model Advisor Checks

Check for Signal Conversion blocks automatically
inserted on signals entering block input ports
Check for hidden Signal Conversion blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports hidden Signal Conversion
blocks that have been automatically inserted on signals entering block input
ports.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify no
Signal
Conversion
blocks are
automatically
inserted
on signals
entering block
inports

A hidden Signal Conversion block
has been automatically inserted on
a signal entering a block inport.
Hidden Signal Conversion blocks are
not supported for code inspection.

Manually insert a Signal Conversion
block on the signal entering the block
inport, and configure the Signal
Conversion block to be excluded from
block reduction.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-30

Simulink® Code Inspector™ Checks

Check for usage of fixed-point instrumentation
Check for usage of fixed-point instrumentation that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports fixed-point
instrumentation incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify usage
of fixed-point
instrumentation

The model configuration
parameter Block reduction
(BlockReduction) is selected,
and the fixed point parameter
Fixed-point instrumentation
mode (MinMaxOverflowLogging) is
set to a value other than Force off.
Simultaneous use of block reduction
and fixed-point instrumentation is
not supported for code inspection.

Open the Fixed-Point Tool and turn
off fixed-point instrumentation for
the model.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-31

4 Model Advisor Checks

Check for root Outport blocks being conditionally
assigned
Check that root outports of submodels are not connected to conditionally
executed subsystems.

Description
This check updates the model diagram and verifies that root outports of
referenced models are not connected to conditionally executed subsystems.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify that root
Outports are
not assigned
conditionally

A root outport of a referenced
model is directly connected to a
conditionally executed subsystem
and the root outport storage class
is set to Auto. Code inspection is
not supported for submodels for
which root outports are assigned by
blocks inside conditionally executed
subsystems.

This check only applies to referenced
models. You can do one of the
following:
• If this model is the top model in
the hierarchy, in the Configuration
Parameters dialog box, on the
Model Referencing pane, set
Total number of instances
allowed per top model to Zero,
which will suppress the check.

• Modify the model so that the
root outports are not directly
connected to conditionally
executed subsystems.

• Use a root outport with a storage
class that is not set to Auto.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-32

Simulink® Code Inspector™ Checks

Check for usage of synthesized local data stores
Check for signal objects in the model workspace that are referenced as
synthesized local data stores by Data Store Read or Data Store Write blocks.

Description
This check updates the model diagram and verifies synthesized local data
store usage. If the model workspace has signal objects that are referenced as
synthesized local data stores by Data Store Read or Data Store Write blocks,
Simulink creates a hidden Data Store Memory block at the root level of the
model. This model is incompatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
synthesized
local data store
usage

Signal objects are referenced as
synthesized local data stores by
Data Store Read or Data Store Write
blocks.

Avoid using signal objects that are
referenced as synthesized local data
stores by Data Store Read or Data
Store Write block. As a possible work
around, create graphical Data Store
Memory blocks to specify the data
stores.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

Check loop unrolling threshold setting
Checks that the model does not have a loop unrolling threshold that might
result in partially unrolled loops in the generated code.

Description
This check updates the model diagram and verifies that the model does not
have a loop unrolling threshold that might result in partially unrolled loops
in the generated code.

4-33

4 Model Advisor Checks

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify loop
unrolling
threshold
setting

The model is configured with a Loop
unrolling threshold that might
result in partially unrolled loops in
the generated code.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
set the Loop unrolling threshold
to the value in the Recommended
Action section of the Model Advisor
window.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-34

Simulink® Code Inspector™ Checks

Check usage of global data stores
Checks that global Data Store Memory blocks use inlined parameters with
non-tunable initial values.

Description
This check updates the model diagram and verifies global data store usage. If
your model has global Data Store blocks with parameters that are not inlined
or have tunable initial values, it is incompatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) is not selected.

SelectOptimization > Signals and
Parameters >Inline parameters.

Verify global
data store
usage

Initial value (InitialValue) must
not be tunable.

Fix the Initial value setting.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-35

4 Model Advisor Checks

Check destinations of If and Switchcase blocks
Check usage of If and Switch Case blocks connected to Action subsystems that
might impact compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and verifies the usage of If and Switch
Case blocks connected to Action subsystems.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check
destination
Action
subsystem of If
and Switchcase
blocks

Action subsystems connected to the
same If or Switch Case blocks do not
do one of the following:
• All combine their output and code
updates.

• All separate their output and code
updates.

Modify the listed Action subsystems
so that they all combine their
output and code updates. Place a
Signal Conversion block on signals
leaving the inports within the
Action subsystems. Select the
Signal Conversion block parameter
Exclude this block from ‘Block
reduction’ optimization to exclude
it from block reduction.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-36

Simulink® Code Inspector™ Checks

Check for root Outport blocks that have non-auto
storage class
Check usage of root outport blocks in referenced model that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and verifies the usage of root outport
blocks in referenced models.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify that the
storage class of
root outports is
supported

Pass reusable subsystem outputs
as: is not set to Structure
reference when root outports in
referenced models have non-auto
storage class.

Set Pass reusable subsystem
outputs as: to Structure
reference.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

Check for Terminator blocks connected to Model
Reference block outports
Check usage of terminator blocks connected to model reference blocks that
might impact compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and verifies the usage of terminator
blocks connected to model reference blocks.

4-37

4 Model Advisor Checks

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
Terminator
block
connectivity

Block is connected to the outport of a
model reference block.

Modify the model so that the outport
of the model reference block is not
connected to a terminator block.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

Check for root Outport blocks being testpointed
Check root outports in referenced models that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and verifies that root outports in
referenced models are not testpointed.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify that root
outports are
not test pointed

Root outport in referenced model is
testpointed.

If the root outport is in the top
model in the hierarchy, suppress the
check by setting Total number of
instances allowed per top model
to Zero. Otherwise, modify the
model so that the root outport is not
testpointed.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-38

Simulink® Code Inspector™ Checks

Check usage of Sources blocks
Check for usage of Sources blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Sources blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.

Block parameter Signal Type
(SignalType) is set to complex.

Set Signal Type to real or auto.

Block parameter Sampling Mode
(SamplingMode) is set to Frame
based.

Set Signal Type to Sample based
or auto.

For inports in triggered
subsystems, Latch input
be delaying outside signal
(LatchByDelayingOutsideSignal) is
selected (set to on).

Clear Latch input be delaying
outside signal. To retain the
latching behavior, restructure the
model by placing a Unit Delay block
before the input block in the parent
diagram.

For root inport blocks that use
a bus object, block parameter
Output as nonvirtual bus
(BusOutputAsStruct) is not selected
(set to off).

For each instance, select Output as
nonvirtual bus.

Check Inport
blocks

Note This will
check shadowed
inports if you
have any in your
model.

Violates a constraint that applies to
all blocks:

Fix the listed block inport or outport.

4-39

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

4-40

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Constant value
(Value) is empty, is nonfinite, has
a MATLAB structure as a value,
is complex, or has two or more
dimensions.

Fix the Constant value setting.Check
Constant
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-41

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Ground
blocks

Violates a constraint that applies to
all blocks:

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-42

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-43

4 Model Advisor Checks

Check usage of Signal Routing blocks
Check for usage of Signal Routing blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Signal Routing blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check Bus
Creator blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-44

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Bus
Selector blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-45

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-46

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check Bus
Assignment
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

Fix the listed block inport or outport.

4-47

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Initial value
(InitialValue) is empty, is
nonfinite, has a MATLAB structure
as a value, is complex, or has two or
more dimensions.

Fix the Initial value setting.

Block parameter Signal type
(SignalType) is set to complex.
Complex values are not supported for
code inspection.

Set Signal type to auto or real.

Check Data
Store Memory
blocks

Violates a constraint that applies to
all blocks:

• Data Store Memory is not of data
type double, single, int8, uint8,
int16, uint16, int32, uint32,
or boolean, or Enumerated with
default value 0. If the block
supports buses:

- Data Store Memory is not a
bus for which the elements
(potentially including other
buses) meet the data type
constraint.

- Data Store Memory has arrays
of buses.

- Data Store Memory has buses
with elements that are arrays
of buses.

Fix the listed Data Store Memory
block.

4-48

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Data Store Memory is complex.

• Data Store Memory is not a scalar,
vector, or 2D matrix.

• Data Store Memory uses
frame-based signals.

• Custom signal storage class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Data Store Memory references a
signal object with a non-empty
initial value.

• Data Store Memory signal storage
class is not set to Auto when the
block has constant (Inf) sample
time.

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Read
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or

Fix the listed block inport or outport.

4-49

4 Model Advisor Checks

Subcheck Condition Recommended Action

Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-50

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Write
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-51

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check From
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-52

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Goto
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-53

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-54

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Initial output is set to an
unsupported value.

Set Initial output to 0.

Allow unequal port widths
(AllowUnequalInputPortWidths) is
selected.

Clear the Allow unequal port
widths parameter.

Input port offsets is set to an
unsupported value.

Set Input port offsets to [].

Check Merge
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

Fix the listed block inport or outport.

4-55

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The first and third input ports and
the output port do not have the same
data type.

Modify the data ports to have the
same data type. Consider selecting
the block parameter Require all
data port inputs to have the same
data type.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Allow
different data input sizes
(AllowDiffInputSizes) is selected.

Clear the Allow different data
input sizes parameter.

Source of Inport 2 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 2 is not a Constant block or
have a constant sample time.

Check Switch
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or

Fix the listed block inport or outport.

4-56

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-57

4 Model Advisor Checks

Subcheck Condition Recommended Action

Data input and output ports do not
have the same data type.

Modify the data ports to have the
same data type. Consider selecting
the block parameter Require
alldata port inputs to have the
same data type.

Multiport Switch blocks must have
at least three inports.

Reconfigure the block to have at least
three inports.

Data port indices are specified and
an input has more than one value.

Modify the data port configuration so
that only one value is specified per
input.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Allow
different data input sizes
(AllowDiffInputSizes) is selected.

Clear the Allow different data
input sizes parameter.

Block parameter Data port for
default case (DataPortForDefault)
is not set to Last data port.

Set Data port for default case to
Last data port.

Source of Inport 1 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 1 is not a Constant block or
have a constant sample time.

Check
Multiport
Switch blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including

Fix the listed block inport or outport.

4-58

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-59

4 Model Advisor Checks

Subcheck Condition Recommended Action

Check Mux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

Fix the listed block inport or outport.

4-60

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Demux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

Fix the listed block inport or outport.

4-61

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Uses multidimensional input, or
uses port-based indexing instead of
specifying indices using the block
dialog.

Configure the block to use
one-dimensional inputs, and
specify indices using the block dialog.
Set block parameter Index Option
to Select all, Index vector
(dialog), or Starting index
(dialog).

Block inport or outport is not a scalar
or vector.

Configure the listed block to use
scalar or vector inports and outports.

Check Selector
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

Fix the listed block inport or outport.

4-62

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-63

4 Model Advisor Checks

Subcheck Condition Recommended Action

Block parameterMode (Mode) is not
set to Vector.

Set Mode to Vector.

Block inports and outports are not
scalars or vectors.

Configure the inports and outports to
be scalars or vectors.

Check Vector
Concatenate
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-64

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-65

4 Model Advisor Checks

Check usage of Math Operations blocks
Check for usage of Math Operations blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Math Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Absolute
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

4-66

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Gain (Gain) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, or
has two or more dimensions.

Fix the Gain setting.

Block parameter Parameter data
type (ParamDataTypeStr) does not
use the same data type as the Gain
block input.

Modify the Gain block to use the same
data type for its input and parameter.
Consider setting Parameter data
type to Inherit: Same as input.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(K.*u), Matrix(K*u),

Set Multiplication to
Element-wise(K.*u), Matrix(K*u),

Check Gain
blocks

4-67

4 Model Advisor Checks

Subcheck Condition Recommended Action

Matrix(u*K), or Matrix(K*u)(u
vector).

Matrix(u*K), or Matrix(K*u)(u
vector).

Only single or double data types
are supported for Matrix(K*u),
Matrix(u*K), or Matrix(K*u)(u
vector) multiplications methods.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Sample Time
(SampleTime) is set to a constant
sample time.

Set Sample Time to an explicit,
non-constant value.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on) and the inport
source is a constant block.

Clear the Saturate on integer
overflow parameter or modify the
model so that the input source is not
a constant block.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-68

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-69

4 Model Advisor Checks

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the port data types to match.

Function (Operator) is set to
an unsupported value: conj or
hermitian.

Set Function to one of the
following values: exp, log, 10^u,
log10, magnitude^2, square,
transposepow, reciprocal, hypot,
rem, or mod.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Math
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-70

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(.*) or Matrix (*).

Set Multiplication to
Element-wise(.*) or Matrix
(*).

Only single or double data types
are supported for Matrix (*)
multiplication.

Block parameter Number of inputs
(inputs) is not set to 2, **, /*, */,
//, or / when both of the following
are true:

• Inport Signal type is a matrix.

Set Number of inputs to 2, **, /*,
*/, //, or / if both of the following
are true:

• Inport Signal type is a matrix.

Check Product
blocks

4-71

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Product block parameter
Multiplication is set to Matrix
(*).

• Product block parameter
Multiplication is set to Matrix
(*).

Block parameter Number of inputs
(inputs) is not set to 2, **, /*, */,
or // when both of the following are
true:

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Set Number of inputs to 2, **, /*,
*/, or // if both of the following are
true:

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Block parameter Number of inputs
(inputs) is not set to / when both of
the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Set Number of inputs to / if both of
the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Sample Time
(SampleTime) is set to a constant
sample time.

Set Sample Time to an explicit,
non-constant value.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on) and source of an
inport is a constant block.

Clear the Saturate on integer
overflow parameter or modify the
model so that no inport source is a
constant block.

4-72

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

Fix the listed block inport or outport.

4-73

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Accumulator data
type (AccumDataTypeStr) does not
use the same data type as the block
inputs.

Modify the block to use the same data
type for its inputs and accumulator.
Consider setting Accumulator data
type to Inherit: Same as first
input.

Block does not have at least two
inports.

Configure the model so that there are
at least two inports to the block.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Sample Time
(SampleTime) is set to a constant
sample time.

Set Sample Time to an explicit,
non-constant value.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on) and source of an
inport is a constant block.

Clear the Saturate on integer
overflow parameter or modify the
model so that no inport source is a
constant block.

Check Sum
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-74

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-75

4 Model Advisor Checks

Subcheck Condition Recommended Action

Block parameter Function
(Operator) is set to cos + jsin
(complex exponential of the input).

Set Function to a value other than
cos + jsin.

Block parameter Approximation
method (ApproximationMethod) is
not set to None.

Set Approximation method to
None.

Check
Trigonometry
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

Fix the listed block inport or outport.

4-76

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

An unsupported data type is specified
for an input or output port.

Modify the port data type to be one
of the following: double, single,
int8, uint8, int16, uint16, int32,
or uint32.

Input and output ports do not have
the same data type.

Modify the port data types to match.

MinMax blocks must have at least
two inports.

Reconfigure the block to have at least
two inports.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check MinMax
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-77

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-78

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check
Rounding
Function
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double or single, .If the
block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

Fix the listed block inport or outport.

4-79

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Reshape
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-80

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Sign
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-81

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block inputs and outports do not
have the same data type.

Fix the listed block inport or outport.

Block parameter Function
(Operator) is not set to sqrt or
signedSqrt.

Set block parameter Function to
sqrt or signedSqrt.

Block parameter Output signal
type (OutputSignalType) is set to
complex.

Set block parameter Output signal
type (OutputSignalType) to auto or
real.

Block inputs and outports data types
are not single or double.

Fix the listed block inport or outport.

Check Sqrt
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or

Fix the listed block inport or outport.

4-82

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-83

4 Model Advisor Checks

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-84

Simulink® Code Inspector™ Checks

Check usage of Signal Attributes blocks
Check for usage of Signal Attributes blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Signal Attributes blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Block parameter Input and output
to have equal (ConvertRealWorld)
is not set to Real World Value
(RWV).

Set Input and output to have
equal to Real World Value (RWV).

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Sample Time
(SampleTime) is set to a constant
sample time.

Set Sample Time to an explicit,
non-constant value.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow) is
selected (set to on) and the inport
source is a constant block.

Clear the Saturate on integer
overflow parameter or modify the
model so that the input source is not
a constant block.

Check
Data Type
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-85

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-86

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check Data
Type Duplicate
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

Fix the listed block inport or outport.

4-87

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check
Data Type
Propagation
blocks

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

Fix the listed block inport or outport.

4-88

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Variable-size signal (VarSizeSig)
is not set to No.

Set Variable-size signal to No.

Signal type (SignalType) is set to
complex.

Set Signal type to any type except
complex.

Sampling mode (SamplingMode) is
set to Frame based.

Set Sampling mode to any mode
except Frame based.

Check Signal
Specification
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

4-89

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Output
(ConversionOutput) is not set
to Signal copy.

Set Output to Signal copy.Check Signal
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-90

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-91

4 Model Advisor Checks

Subcheck Condition Recommended Action

Block parameter Data
type for sample time
(ProbeSampleTimeDataType) is
not set to single or double.

Set block parameter Data type for
sample time to single or double.

Check Probe
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-92

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Width
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-93

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-94

Simulink® Code Inspector™ Checks

Check usage of Logical and Bit Operations blocks
Check for usage of Logical and Bit Operations blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Logical and Bit Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The data type of a block outport is
not either an enumerated type with
default value 0, or boolean.

Modify the outport data type to be
either an enumerated type with
default value 0, or boolean.

Block input ports do not have the
same data type.

Modify the input ports to have the
same data type.

Block parameter Relational
operator (Operator) is set to an
unsupported value: isInf, isNaN, or
isFinite.

Set Relational operator to a
supported value: <=, ==, >=, ~=, <, or
>.

Check
Relational
Operator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

4-95

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-96

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Logical Operator block outport is not
boolean or uint8.

Modify the data type of the outport to
boolean or uint8.

Logical Operator blocks must have at
least two inports, except in the case
of the NOT operator.

Reconfigure the block to have at least
two inports.

Block input ports do not have the
same data type.

Configure the input ports to have the
same data type.

Check Logic
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

Fix the listed block inport or outport.

4-97

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

With Number of input
ports(NumInputPorts) set to 1
and Operator(logicop) set to AND,
OR, NAND, NOR, or XOR, the inport data
type is not a scalar.

Configure the inport data type to be
a scalar.

Check Bitwise
Operator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type int8, uint8, int16,
uint16, int32, uint32, or
boolean. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-98

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-99

4 Model Advisor Checks

Subcheck Condition Recommended Action

Diagnostic for out of range shift
value (DiagnosticForOORShift) is
not set to Error.

Set Diagnostic for out of range
shift value to Error.

Binary points to shift
(BinPtShiftNumber) is not set
to 0.

Set Bits points to shift to 0.

Bits to shift: Number
(BitShiftNumber) is not within
the allowable range of the inport data
type.

Enter a Bits to shift: Number that
is within the allowable range of the
inport data type.

Bits to shift: Source
(BitShiftNumberSource) is set
to Input port and Bits to shift:
Direction (BitShiftDirection)
is set to Bidirectional when the
source of Inport 2 either:

• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 2 is not a Constant block or
have a constant sample time.

Check
ArithShift
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-100

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-101

4 Model Advisor Checks

Check usage of Lookup Tables blocks
Check for usage of Lookup Table blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Lookup Table blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the input and output ports to
have the same data type.

Input or output port is not a scalar. Configure the listed input and output
ports to be scalars.

Block parameter Number
of table dimensions
(NumberOfTableDimensions) is
not set to 1 or 2.

Set Number of table dimensions
to 1 or 2.

Block parameter Interpolation
method (InterpMethod) is not set to
Linear.

Set Interpolation method to
Linear.

Block parameter Extrapolation
method (ExtrapMethod) is not set to
Clip or Linear.

Set Extrapolation method to Clip
or Linear.

Block parameter Index search
method (IndexSearchMethod) is not
set to Binary search.

Set Index search method to Binary
search.

Block parameter Begin
index search using
previous index result
(BeginIndexSearchUsingPreviousIndexResult)
is selected (set to on).

Clear the Begin index search
using previous index result
parameter.

Check Lookup
Table blocks

4-102

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameter Support tunable
table size in code generation
(SupportTunableTableSize) is
selected (set to on).

Clear the Support tunable table
size in code generation parameter.

Block parameter Remove
protection against out-of-range
input in generated code
(RemoveProtectionInput) is
cleared (set to off).

Select the Remove protection
against out-of-range input in
generated code parameter.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow)
is selected (set to on).

Clear the Saturate on integer
overflow parameter.

Block parameter Fraction > Data
Type (FractionDataTypeStr) is not
set to double or single.

Set Fraction > Data Type to double
or single.

Block parameter Table data (Table)
is empty, is nonfinite, has a MATLAB
structure as a value, is complex, or
has two or more dimensions.

Fix the Table data setting.

Block parameter Breakpoints 1
(BreakpointsForDimension1) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, or
has two or more dimensions.

Fix the Breakpoints 1 setting.

Block parameter Breakpoints 2
(BreakpointsForDimension2) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, or
has two or more dimensions.

Fix the Breakpoints 2 setting.

Block parameter Breakpoints 1
(BreakpointsForDimension1DataTypeStr)
is not using the same data type
as the block input.

Modify the data types to match.

4-103

4 Model Advisor Checks

Subcheck Condition Recommended Action

Block parameter Breakpoints 2
(BreakpointsForDimension2DataTypeStr)
is not using the same data type
as the block input.

Modify the data types to match.

Block parameter Table data
(TableDataTypeStr) is not using the
same data type as the block output.

Modify the data types to match.

Block parameter
Intermediate Results
(IntermediateResultsDataTypeStr)
is not using the same data type
as the block output.

Modify the data types to match.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
IIf the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

4-104

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-105

4 Model Advisor Checks

Check usage of User-Defined Function blocks
Check for usage of User-Defined Function blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in User-Defined Function blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The S-function was not created using
the current release of the Legacy
Code Tool.

If possible, create the S-function
using the Legacy Code Tool, or
explore alternatives for including the
code in the model.

An S-function argument is neither a
scalar nor a vector of fixed dimension.

Modify the S-function such that
arguments are scalars or vectors of
fixed dimension.

The Legacy Code Tool
S-function specifies a
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec, rather than
an OutputFcnSpec.

Modify the S-function configuration
to specify an OutputFcnSpec.

The S-function has more than one
dwork.

Modify the S-function configuration
to specify one dwork.

S-function parameters
(Parameters) is complex, non-finite,
or a MATLAB structure.

Modify the model so that S-function
parameters is not complex,
non-finite, or a MATLAB structure.

Check
S-Function
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,

Fix the listed block inport or outport.

4-106

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-107

4 Model Advisor Checks

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-108

Simulink® Code Inspector™ Checks

Check usage of Ports and Subsystems blocks
Check for usage of Ports and Subsystems blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Ports and Subsystems blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The signal entering the enable port is
not of data type boolean.

Fix the signal data type.

Block parameter Show output port
(ShowOutputPort) is selected.

Clear the parameter Show output
port.

The Enable Port block is located at
the root level of the model.

Remove or relocate the Enable Port
block.

The signal entering the Enable Port
of the parent subsystem has a:
• Constant block source.

• Constant sample time.

Modify the model so that the signal
entering the Enable Port of the
parent subsystem:
• Is not from a Constant block.

• Does not have a constant sample
time.

Check Enable
Port blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

Fix the listed block inport or outport.

4-109

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-110

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Model argument values
(for this instance)
(ParameterArgumentValues) is
complex, non-finite, or a MATLAB
structure.

Modify the model so that Model
argument values (for this
instance) is not complex, non-finite,
or a MATLAB structure.

For blocks with variants, either of
these conditions apply:
• Generate preprocessor
conditionals
(GeneratePreprocessorConditionals)
is selected.

• Model Configuration
Parameters > Code Generation
> Interface > Generate
preprocessor conditionals
(GeneratePreprocessorConditionals)
is not set to Disable all.

Clear Generate preprocessor
conditionals or set Model
Configuration Parameters >
Code Generation > Interface
> Generate preprocessor
conditionals to Disable all.

Block is in protected mode. Remove protection from the model
reference. For more information, see
“Model Protection”.

Check Model
Reference
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

4-111

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-112

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

The subsystem is not one of the
following:
• Virtual

• Enabled

• Function-Call

• If Action

• Inlined Atomic

• Triggered

If possible, reconfigure the subsystem
to be either virtual (clear the
Subsystem block parameter Treat as
atomic unit), or an inlined atomic,
enabled, function-call, if action, or
triggered subsystem. Alternatively,
wrap the subsystem in a Model block,
or explore other implementation
options.

For blocks with variants, either of
these conditions apply:
• Generate preprocessor
conditionals
(GeneratePreprocessorConditionals)
is selected.

• Model Configuration
Parameters > Code Generation
> Interface > Generate
preprocessor conditionals
(GeneratePreprocessorConditionals)
is not set to Disable all.

Clear Generate preprocessor
conditionals or set Model
Configuration Parameters >
Code Generation > Interface
> Generate preprocessor
conditionals to Disable all.

For nonvirtual subsystems,
Function packaging
(RTWSystemCode) is not set to
Inline.

Set Function packaging to Inline.

Check
Subsystem
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-113

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-114

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check Action
Subsystem
blocks

Action subsystem contains model
reference blocks and/or conditional
subsystems.

Reconfigure the subsystem so
that it does not contain model
reference blocks and/or a conditional
subsystems.

In the parent subsystem, the signal
entering the trigger port is not a
scalar.

Configure the signal entering the
trigger port of the parent subsystem
to be scalar.

In the parent subsystem, the signal
entering the trigger port is not a
boolean data type when Trigger
type (TriggerType) isrising,
falling, or either.

Configure the signal entering the
trigger port of the parent subsystem
to be boolean.

Show output port
(ShowOutputPort) is selected.

Clear Show output port.

Block is at the root level of the model
with Trigger type (TriggerType)
set to rising, falling, or either.

Do one of the following:
• Configure the model so that the
trigger block is not at the root of
the model.

• Configure the model so that
Trigger type is function-call.

States when enabling
(StatesWhenEnabling) is set to
inherit.

Set States when enabling to held
or reset.

The signal entering the Trigger Port
of the parent subsystem has a:
• Constant block source.

• Constant sample time.

Modify the model so that the signal
entering the Trigger Port of the
parent subsystem:
• Is not from a Constant block.

• Does not have a constant sample
time.

Check Trigger
Port blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,

Fix the listed block inport or outport

4-115

4 Model Advisor Checks

Subcheck Condition Recommended Action

int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

4-116

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Action
Port blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-117

4 Model Advisor Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block destination is a terminator
block or an empty action subsystem.

Modify the model so that the block
destination is not a terminator block
or an empty action subsystem.

Source of Inport 1 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 1 is not a Constant block or
have a constant sample time.

Check If blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-118

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-119

4 Model Advisor Checks

Subcheck Condition Recommended Action

The Number of iterations
(numberOfIterations) is not set to 1.

Set the Number of iterations to 1.Check
Function-Call
Generator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

Fix the listed block inport or outport.

4-120

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Case conditions (CaseConditions)
has a range of values for the input.

Configure Case conditions so that
the input does not have a range of
values.

Block destination is a terminator
block or an empty action subsystem.

Modify the model so that the block
destination is not a terminator block
or an empty action subsystem.

Source of Inport 1 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 1 is not a Constant block or
have a constant sample time.

Check
SwitchCase
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

4-121

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-122

Simulink® Code Inspector™ Checks

Check usage of Discontinuities blocks
Check for usage of Discontinuities blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Discontinuities blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Upper limit
(UpperLimit) is empty, is nonfinite,
has a MATLAB structure as a value,
is complex, or has two or more
dimensions.

Fix the Upper limit setting.

Block parameter Lower limit
(LowerLimit) is empty, is nonfinite,
has a MATLAB structure as a value,
is complex, or has two or more
dimensions.

Fix the Lower limit setting.

Block parameter UpperLimitSource
is not set to dialog.

Use the block parameter Upper
limit rather than input ports to
specify the upper limit.

Block parameter LowerLimitSource
is not set to dialog.

Use the block parameter Lower
limit rather than input ports to
specify the lower limit.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Saturate
blocks

4-123

4 Model Advisor Checks

Subcheck Condition Recommended Action

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix..

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

Fix the listed block inport or outport.

4-124

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-125

4 Model Advisor Checks

Check usage of Sinks blocks
Check for usage of Sinks blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Sinks blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.

Signal type
(NumberOfTableDimensions) is set to
complex.

.Set Signal type to real or auto.

Sampling mode (SamplingMode) is
set to Frame based.

Set Sampling mode to Sample
based or auto.

Root level outport Initial output
(InitialOutput) is not [].

Set root level outport Initial output
to [].

Source of initial output value
(SourceOfInitialOutputValue) is
not set to Dialog.

Set Source of initial output value
to Dialog.

Initial output (InitialOutput) is
complex or a MATLAB structure.

Modify the model so that Initial
output is not complex or a MATLAB
structure.

Check Outport
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or

Fix the listed block inport or outport.

4-126

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

4-127

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check
Terminator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

Fix the listed block inport or outport.

4-128

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-129

4 Model Advisor Checks

Check usage of Discrete blocks
Check for usage of Discrete blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Discrete blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Block parameter Initial conditions
(X0) is empty, is nonfinite, has a
MATLAB structure as a value,
is complex, or has two or more
dimensions.

Fix the Initial conditions setting.

Block parameter Input Processing
(InputProcessing) is set to Columns
as channels (frame based).

Set Input Processing to Elements
as channels (sample based) or
Inherited.

When block state resolves to a signal
with a custom signal storage class,
the signal storage class:
• Type is not set to Unstructured.

• Data initialization is set to None.

Modify the custom signal storage
class.

Block state resolves to a signal object
with a non-empty initial value.

Modify the signal object.

Check Unit
Delay blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

4-130

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

4-131

4 Model Advisor Checks

Subcheck Condition Recommended Action

Input ports data types are not:
• single or double for non-reset
ports

• boolean for external reset ports

Modify the input ports data types to
be:
• single or double for non-reset
ports

• boolean for external reset ports

Inports and outports are not scalars. Modify the inport or outports to be
scalars.

Output ports data types are not
single or double.

Modify the output ports data types to
be single or double.

The input and output ports do not
have the same data type.

Modify the port data types to match.
The reset port data type does not
need to match the other input and
output data types.

Block parameter Integrator
method (IntegratorMethod) is not
set to one of the following:

• Integration: Forward Euler

• Integration: Backward Euler

• Integration: Trapezoidal

Set Integrator method to one of the
following:

• Integration: Forward Euler

• Integration: Backward Euler

• Integration: Trapezoidal

Block parameter Show state port
(ShowStatePort) is selected.

Clear Show state port.

Block parameter External reset
(ExternalReset) is set to none when
the source of Inport 2 either:

• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 2 is not a Constant block or
have a constant sample time.

Either or both block parameters
Upper saturation limit
(UpperSaturationLimit) and
Lower saturation limit
(LowerSaturationLimit):

Set both theUpper saturation limit
and the Lower saturation limit
to a one dimensional, non-complex,
finite value.

Check Discrete
Integrator
blocks

4-132

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Are empty, non-finite, or complex.

• Use MATLAB structures.

• Have two or more dimensions.

Block is inside a conditional
subsystem.

Modify the model so that the Discrete
Integrator block is not inside a
conditional subsystem.

When block state resolves to a signal
with a custom signal storage class,
the signal storage class:
• Type is not set to Unstructured.

• Data initialization is set to None.

Modify the custom storage class.

Block state resolves to a signal object
with a non-empty initial value.

Modify the signal object.

Violates a constraint that applies to
all blocks:

• If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

4-133

4 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 3-5

• “Supported Blocks — By Category” on page 3-54

4-134

Simulink® Code Inspector™ Checks

Check usage of Stateflow blocks
Check for usage of Stateflow blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow blocks.

Results and Recommended Actions

Check Condition Recommended Action

Function packaging
(RTWSystemCode) is not set to
Inline.

Set Function packaging to Inline.Check
Stateflow
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

Fix the listed block inport or outport.

4-135

4 Model Advisor Checks

Check Condition Recommended Action

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class:

- Type is not set to
Unstructured.

- Data initialization is set to
None.

• Block output port references a
signal object with a non-empty
initial value.

• Block has constant (Inf) sample
time and an outport is testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• MATLAB Chart

• State Transition Table

• Truth Table

4-136

Simulink® Code Inspector™ Checks

Check usage of Stateflow charts
Check for usage of Stateflow charts that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow charts.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
control flows
do not have
cycles

Chart contains control flow cycles,
which are not supported for code
inspection.

Configure the chart so that it does
not contain control flow cycles.

Check usage
of Stateflow
object palette

The chart contains one or more of the
following objects:
• Boxes

• States

• Subcharts

• Graphical functions

• MATLAB functions

• Truth Tables

• Simulink functions

Configure the chart so that it does
not contain the unsupported objects.

Check that
all charts
specify ’C’ as
their action
language

Chart property Action Language is
not set to C.

Set Action Language to C.

4-137

4 Model Advisor Checks

Subcheck Condition Recommended Action

Check that all
charts specify
’Inherited’ as
their update
method

Chart property Update method is
not set to Inherited.

Set Update method to Inherited.

Check that no
charts execute
at initialization

Chart property Execute (enter)
Chart at Initialization is selected
(set to on).

Clear the chart property Execute
(enter) Chart at Initialization
parameter.

Check that no
charts specify
saturation
on overflow
for integer
operations

Chart property Saturate on integer
overflow is selected (set to on).

Clear the chart property Saturate
on integer overflow parameter.

Check that no
charts support
variable-size
arrays

Chart property Support
variable-size arrays is selected (set
to on).

Clear the chart property Support
variable-size arrays parameter.

Check that
control flows
are structured

Chart contains unstructured control
flows, which are not supported for
code inspection.

Configure the chart so that it does not
contain unstructured control flows.

Check that
all control
flows have
unique default
transitions

Control flow has more than 1 default
transition.

Configure the chart so that it has 1
default transition.

4-138

Simulink® Code Inspector™ Checks

Check usage of Stateflow transitions
Check for usage of Stateflow transitions that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow transitions.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
actions do
not have
unsupported
operations

Action uses an operation that is not:

• := or =

• + , += , -, or -=

• * , *=, / or /=

• &, && or &=

• |, || or |=

• << or >>

• cast()

• ^ or ^=

• %% or <

• <= or ==

• ~= or !=

• <> or >

• >= or ~

Modify the chart so that action uses
only supported operations.

Check that
all transition
conditions are
of boolean data
type

Transition condition is not of boolean
data type.

Modify the transition condition so
that is of boolean data type.

4-139

4 Model Advisor Checks

Subcheck Condition Recommended Action

Check that no
actions access
context-sensitive
constants

Action uses context-sensitive
constants, which is not supported for
code inspection.

Modify the action to avoid using
context-sensitive constants.

Check that no
actions access
custom data

Action accesses custom data, which
is not supported for code inspection.

Modify the action to avoid accessing
custom data.

Check that no
transitions
have event
triggers

Transition has an event trigger,
which is not supported for code
inspection.

Modify the transition to avoid using
an event trigger.

Check that
transitions
do not have
transition
actions

Transitions has a transition action,
which is not supported for code
inspection.

Modify the transition to avoid using
a transition action.

Check that
no actions
contain a
function whose
argument is of
an invalid data
type

Math function in an action is not a:

• Single or double type argument for
the following functions:

- acos, asin, atan

- ceil, cosh, cosh

- exp, fabs, floor

- fmod, ldexp, log

- log10, pow, sin

- sinh, sqrt, tan, tanh

• Non-boolean argument for the
following functions:

- abs, max, min

• Integer type argument for the
labs function.

Modify the math function to use
supported data types.

4-140

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check that no
actions contain
a binary
operator whose
operands are
of mixed data
type

Action contains a binary operator of
mixed data type operands, which is
not supported for code inspection.

Modify the chart to avoid using
binary operators with operands of
mixed data type.

Check that
no transitions
have a function
with more than
2 arguments

Transition has a function with more
than 2 arguments.

Modify the function to have 2 or
fewer arguments.

Check that no
actions access
time (t)

Action accesses time, which is not
supported for code inspection.

Modify the action to avoid accessing
time.

See Also

• “Graphical Expression of Modal Logic”

• “Transitions”

• “Transition Connections”

• “Default Transitions”

4-141

4 Model Advisor Checks

Check usage of Stateflow junctions
Check for usage of Stateflow junctions that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow junctions.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
non-terminating
junctions have
exactly one
unconditional
exiting
transition

Non-terminating junction does not
have exactly one unconditional
exiting transition. A single
unconditional exiting transition
prevents backtracking and transition
shadowing.

Modify junction so that it has one
unconditional exiting transition.

Check that
the chart uses
no history
junctions

Chart contains a history junction. Modify chart so that it does not
contain a history junction.

Check that
unconditional
transitions
execute last
in execution
order

Unconditional transition is not last
in order of execution.

Modify chart so that the
unconditional transition is the
last in order of execution. This
prevents transition shadowing.

See Also

• “Connective Junctions”

• “History Junctions”

4-142

Simulink® Code Inspector™ Checks

Check usage of Stateflow data
Check for usage of Stateflow data that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow data.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
Stateflow
data is of a
supported data
type

Chart data types are not builtin,
enumerated, or bus. If the chart data
type is a bus, the data is an array of
buses or has elements that are arrays
of buses.

Modify chart data types to be
builtin, enumerated, or bus. If the
chart data type is bus, update the
chart so that the data is not an array
of buses or have elements that are
arrays of buses.

Check that the
chart does not
specify initial
values for chart
data with scope
Output

Chart using data with scope Output
specifies an initial value.

Modify the chart to avoid specifying
an initial value for data with scope
Output.

Check that the
chart uses only
non-complex
data

Chart uses complex data. Modify chart so that it does not use
complex data.

See Also
“Data Specification”

4-143

4 Model Advisor Checks

Check usage of Stateflow events
Check for usage of Stateflow events that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow events.

Results and Recommended Actions

Check Condition Recommended Action

Event scope is not Output. Modify model so that event scope is
Output.

Check
Stateflow
events Event trigger is not function-call. Modify model so that event trigger is

function-call

See Also
“Input and Output Events”

4-144

Simulink® Code Inspector™ Checks

Check usage of root Outport blocks
Check for usage of root Outport blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports root Outport block usage
incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify sample
times

One or more root Outport blocks
specify a constant (Inf) sample time.
This will cause the model functions
to fail validation, because the root
outport assignment is moved to the
model initialize function.

Set the sample times of the
root Outport blocks to explicit,
nonconstant sample times.

Verify root
Outports pass
buses to parent
models as
structures

One or more root Outport blocks pass
a bus to the parent model without
passing the bus as a structure. This
might cause Simulink software to
insert a hidden Signal Conversion
block in the parent model, which is
not supported for code inspection.

For each instance, open the
Outport block dialog box and
select the parameter Output as
nonvirtual bus in parent model
(BusOutputAsStruct).

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-145

4 Model Advisor Checks

Check usage of buses
Check for usage of buses that might impact compatibility with Simulink
Code Inspector.

Description
This check updates the model diagram and reports bus usage incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
automatic
conversion
between
virtual to
non-virtual
buses

Simulink software performed an
automatic conversion from a virtual
to a nonvirtual bus at the interface
of one or more listed blocks. This
creates a hidden Signal Conversion
block, which is not supported for code
inspection.

Modify the model to use nonvirtual
buses at the interfaces of the listed
blocks.

Verify that
no blocks in
the model
perform an
unsupported
operation on a
bus

In the model, a nonvirtual block
operates on a virtual bus, or a Unit
Delay block operates on a bus (virtual
or nonvirtual).

Modify the model so that nonvirtual
blocks operate on a virtual buses,
and Unit Delay blocks operate on
buses. This action simplifies bus
processing to promote traceability
and readability of generated code.

See Also
“Other Modelwide Attribute Constraints” on page 2-19

4-146

5

Simulink Code Inspector
Dialog Box Parameters

5 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box
The Simulink Code Inspector dialog box with parameters at their initial
default settings appears as follows.

5-2

Simulink Code Inspector Dialog Box

In this section...

“Simulink Code Inspector Dialog Box Overview” on page 5-4

“This is the top of the model hierarchy” on page 5-5

“Inspect all referenced models” on page 5-6

“Omit model from code inspection if it fails compatibility check” on page 5-7

“Generate code before code inspection” on page 5-8

“Code placement” on page 5-9

“Code folder” on page 5-10

“Report folder” on page 5-11

5-3

5 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box Overview
Control code inspection and compatibility checking for a model.

To get help on an option

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-4

Simulink Code Inspector Dialog Box

This is the top of the model hierarchy
Specify whether the model being configured for code inspection is the top
model in the model reference hierarchy.

Settings
Default: on

On
Code inspection (and code generation if requested) uses a top model
target.

Off
Code inspection (and code generation if requested) uses a model
reference target.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setTopModel.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-5

5 Simulink® Code Inspector™ Dialog Box Parameters

Inspect all referenced models
Specify whether model compatibility checking and code inspection should be
performed for descendants of this model in the model reference hierarchy.

Settings
Default: off

On
Model compatibility checking and code inspection are performed for
descendants of this model in the model reference hierarchy.

Off
Model compatibility checking and code inspection are performed only
for this model.

Dependencies
Selecting Inspect all referenced models changes the displayed name for
the option Omit model from code inspection if it fails compatibility
check to Omit models from code inspection if they fail compatibility
checks, and changes the displayed name of the button Check this model
to Check all models.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setFollowModelLinks.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-6

Simulink Code Inspector Dialog Box

Omit model from code inspection if it fails
compatibility check
Specify whether code inspection terminates if a model fails compatibility
checking.

Settings
Default: off

On
Code inspection terminates if a model fails compatibility checking. Code
generation (if requested) also does not occur.

Off
Code inspection does not terminate if a model fails compatibility
checking.

Dependencies
Selecting the option Inspect all referenced models changes the displayed
name for this option from Omit model from code inspection if it fails
compatibility check to Omit models from code inspection if they fail
compatibility checks.

Command-Line Information
The equivalent Simulink Code Inspector configuration
method for selecting or clearing this option is
slci.Configuration.setTerminateOnIncompatibility.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-7

5 Simulink® Code Inspector™ Dialog Box Parameters

Generate code before code inspection
Specify whether to generate code before code inspection.

Settings
Default: off

On
Generates model code at the beginning of code inspection.

Off
Uses previously generated model code for code inspection.

Dependencies
Selecting Generate code before code inspection disables the Code
placement and Code folder options, and changes the displayed name of the
button Inspect code to Generate and inspect code.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setGenerateCode.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-8

Simulink Code Inspector Dialog Box

Code placement
Specify code placement for code inspection.

Settings
Default: Embedded Coder default

Embedded Coder default
Specifies that previously generated code resides in the default folders
created by code generation.

Single folder
Specifies that previously generated code has been repackaged to reside
in a single, user-defined folder.

Dependencies

• Clearing the option Generate code before code inspection enables
the Code placement option.

• Selecting the value Single folder for Code placement enables the Code
folder parameter.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodePlacement.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-9

5 Simulink® Code Inspector™ Dialog Box Parameters

Code folder
Specify a folder containing previously generated code for code inspection.

Settings
Default: ''

Specifies the path to a folder containing previously generated code to be
inspected. Use this parameter only if you are inspecting generated code that
has been repackaged to reside in a single, user-defined folder.

Dependencies
This parameter is enabled by setting the value of the Code placement
parameter to Single folder.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodeFolder.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-10

Simulink Code Inspector Dialog Box

Report folder
Specify a report folder for code inspection.

Settings
Default: Subfolder slprj/slci relative to the location of the model.

Specifies the path to a folder in which code inspection should place code
inspection report artifacts.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setReportFolder.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

5-11

	toc
	Functions — Alphabetical List
	Model Configuration Constraints
	Model Configuration Constraints
	Simulink Configuration Parameter Constraints
	Solver
	Data Import/Export
	Optimization
	Optimization: Signals and Parameters
	Optimization: Stateflow
	Diagnostics: Data Validity
	Diagnostics: Connectivity
	Diagnostics: Model Referencing
	Hardware Implementation
	Model Referencing
	Code Generation: General
	Code Generation: Comments
	Code Generation: Symbols
	Code Generation: Custom Code
	Code Generation: Interface
	Code Generation: Verification
	Code Generation: Code Style
	Code Generation: Data Type Replacement
	Code Generation: Not in GUI

	Other Modelwide Attribute Constraints
	Supported Functions and Operations in Code Replacement Libraries

	Block Constraints
	Block Constraints
	Block Constraints — Alphabetical List
	All Blocks
	Abs
	Action Port
	Bitwise Operator
	Bus Assignment
	Bus Creator
	Bus Selector
	Constant
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Data Type Duplicate
	Data Type Propagation
	Discrete-Time Integrator
	Demux
	DocBlock
	Enable Port
	From
	Function-Call Generator
	Gain
	Goto
	Ground
	If
	Inport
	Logical Operator
	1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)
	Math Function
	Merge
	MinMax
	Model
	Model Info
	Multiport Switch
	Mux
	Outport
	Probe
	Product
	Relational Operator
	Reshape
	Rounding Function
	Saturation
	Selector
	S-Function
	Shift Arithmetic
	Sign
	Signal Conversion
	Signal Specification
	Sqrt
	Stateflow
	Subsystems
	Sum, Add, Subtract
	Switch
	Switch Case
	Terminator
	Trigger
	Trigonometric Function
	Unit Delay
	Vector Concatenate
	Width

	Supported Blocks — By Category
	Commonly Used Blocks
	Discontinuity Blocks
	Discrete Blocks
	Logic and Bit Operation Blocks
	Lookup Tables
	Math Operation Blocks
	Model-Wide Utilities
	Port & Subsystem Blocks
	Signal Attribute Blocks
	Signal Routing Blocks
	Sink Blocks
	Source Blocks
	User-Defined Functions

	Fatal Incompatibilities
	Supported Mask Blocks

	Model Advisor Checks
	Simulink Code Inspector Checks
	Simulink Code Inspector Checks Overview
	See Also

	Check code generation settings
	Description
	Results and Recommended Actions
	See Also

	Check data import/export settings
	Description
	Results and Recommended Actions
	See Also

	Check diagnostic settings
	Description
	Results and Recommended Actions
	See Also

	Check hardware implementation settings
	Description
	Results and Recommended Actions
	See Also

	Check optimization settings
	Description
	Results and Recommended Actions
	See Also

	Check solver settings
	Description
	Results and Recommended Actions
	See Also

	Check for unconnected objects in the model
	Description
	Results and Recommended Actions
	See Also

	Check system target file setting
	Description
	Results and Recommended Actions
	See Also

	Check function specification setting
	Description
	Results and Recommended Actions
	See Also

	Check for Stateflow machine data
	Description
	Results and Recommended Actions
	See Also

	Check for Stateflow machine events
	Description
	Results and Recommended Actions
	See Also

	Check conditional input branch execution setting
	Description
	Results and Recommended Actions
	See Also

	Check for unsupported blocks
	Description
	Results and Recommended Actions
	See Also

	Check storage class for workspace variables
	Description
	Results and Recommended Actions
	See Also

	Check for sample times in the model
	Description
	Results and Recommended Actions
	See Also

	Check for Signal Conversion blocks automatically inserted on sig
	Description
	Results and Recommended Actions
	See Also

	Check for usage of fixed-point instrumentation
	Description
	Results and Recommended Actions
	See Also

	Check for root Outport blocks being conditionally assigned
	Description
	Results and Recommended Actions
	See Also

	Check for usage of synthesized local data stores
	Description
	Results and Recommended Actions
	See Also

	Check loop unrolling threshold setting
	Description
	Results and Recommended Actions
	See Also

	Check usage of global data stores
	Description
	Results and Recommended Actions
	See Also

	Check destinations of If and Switchcase blocks
	Description
	Results and Recommended Actions
	See Also

	Check for root Outport blocks that have non-auto storage class
	Description
	Results and Recommended Actions
	See Also

	Check for Terminator blocks connected to Model Reference block o
	Description
	Results and Recommended Actions
	See Also

	Check for root Outport blocks being testpointed
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sources blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Routing blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Math Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Attributes blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Logical and Bit Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Lookup Tables blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of User-Defined Function blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Ports and Subsystems blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discontinuities blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sinks blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discrete blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow charts
	Description
	Results and Recommended Actions

	Check usage of Stateflow transitions
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow junctions
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow data
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow events
	Description
	Results and Recommended Actions
	See Also

	Check usage of root Outport blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of buses
	Description
	Results and Recommended Actions
	See Also

	Simulink Code Inspector Dialog Box Parameters
	Simulink Code Inspector Dialog Box
	Simulink Code Inspector Dialog Box Overview
	To get help on an option
	See Also

	This is the top of the model hierarchy
	Settings
	Command-Line Information
	See Also

	Inspect all referenced models
	Settings
	Dependencies
	Command-Line Information
	See Also

	Omit model from code inspection if it fails compatibility check
	Settings
	Dependencies
	Command-Line Information
	See Also

	Generate code before code inspection
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code placement
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code folder
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report folder
	Settings
	Command-Line Information
	See Also

